# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
from scipy.special import jv, legendre, sph_harm, jacobi
from math import pi
from numpy import conj as conjugate
from numpy import floor, sqrt, sin, cos, exp, power
from scipy.special import comb
from scipy.special import factorial
from sympy.physics.wigner import wigner_3j as Wigner3j_sympy
from sympy.physics.wigner import wigner_6j as Wigner6j_sympy
from sympy import N as sympyEvaluate
import numpy as np
import os
from scipy.sparse import csr_matrix
from scipy.sparse import eye as sparse_eye
import sys
if sys.version_info > (2,):
xrange = range
def roundPy2(x):
return round(x + 1.0e-15)
else:
roundPy2 = round
__all__ = ["Wigner3j", "Wigner6j", "TriaCoeff", "CG", "WignerDmatrix"]
wignerPrecal = (
True # use precalculated values - tested only for the main algorithm calls
)
wignerPrecalJmax = 23
wignerPrecal3j = np.load(
os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"data",
"precalculated3j.npy",
),
encoding="latin1",
allow_pickle=True,
)
wignerPrecal6j = np.load(
os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"data",
"precalculated6j.npy",
),
encoding="latin1",
allow_pickle=True,
)
[docs]
def Wigner3j(j1, j2, j3, m1, m2, m3):
r"""
Evaluates Wigner 3-j symbol
Args:
j1,j2,j3,m1,m2,m3 (float): parameters of
:math:`\begin{pmatrix}j_1 & j_2 & j_2 \\ m_1 & m_2 & m_3\end{pmatrix}`
"""
# use precalculated values
if wignerPrecal and (
(j2 < 2.1) and abs(m2) < 2.1 and (j1 < wignerPrecalJmax)
):
# we shoud have precalculated value
if (
(abs(j1 - j2) - 0.1 < j3)
and (j3 < j1 + j2 + 0.1)
and abs(m1 + m2 + m3) < 0.1
):
# return precalculated value
return wignerPrecal3j[
round(roundPy2(2 * j1)),
round(roundPy2(2 * (wignerPrecalJmax + m1))),
round(roundPy2(2.0 * j2)),
round(roundPy2(m2 + j2)),
round(roundPy2(2 - j3 + j1)),
]
else:
# that value is 0
return 0
if j1 > 40 or j2 > 40 or j3 > 40 or m1 > 40 or m2 > 40 or m3 > 40:
# usual implementation of coefficient calculation that uses factorials
# would fail (overflow). Use instead something slower verion from Sympy
return float(
sympyEvaluate(Wigner3j_sympy(j1, j2, j3, m1, m2, m3).doit())
)
# print "unknown %.1f %.1f %.1f %.1f %.1f %.1f " % (j1,j2,j3,m1,m2,m3)
# ======================================================================
# Wigner3j.m by David Terr, Raytheon, 6-17-04
#
# Compute the Wigner 3j symbol using the Racah formula [1].
#
# Usage:
# from wigner import Wigner3j
# wigner = Wigner3j(j1,j2,j3,m1,m2,m3)
#
# / j1 j2 j3 \
# | |
# \ m1 m2 m3 /
#
# Reference: Wigner 3j-Symbol entry of Eric Weinstein's Mathworld:
# http://mathworld.wolfram.com/Wigner3j-Symbol.html
# ======================================================================
# Error checking
if (
(2 * j1 != floor(2 * j1))
| (2 * j2 != floor(2 * j2))
| (2 * j3 != floor(2 * j3))
| (2 * m1 != floor(2 * m1))
| (2 * m2 != floor(2 * m2))
| (2 * m3 != floor(2 * m3))
):
raise ValueError("All arguments must be integers or half-integers.")
# Additional check if the sum of the second row equals zero
if m1 + m2 + m3 != 0:
# print('3j-Symbol unphysical')
return 0
if j1 - m1 != floor(j1 - m1):
raise ValueError("2*j1 and 2*m1 must have the same parity")
if j2 - m2 != floor(j2 - m2):
raise ValueError("2*j2 and 2*m2 must have the same parity")
if j3 - m3 != floor(j3 - m3):
raise ValueError("2*j3 and 2*m3 must have the same parity")
if (j3 > j1 + j2) | (j3 < abs(j1 - j2)):
raise ValueError("j3 is out of bounds.")
if abs(m1) > j1:
raise ValueError("m1 is out of bounds.")
if abs(m2) > j2:
raise ValueError("m2 is out of bounds.")
if abs(m3) > j3:
raise ValueError("m3 is out of bounds.")
t1 = j2 - m1 - j3
t2 = j1 + m2 - j3
t3 = j1 + j2 - j3
t4 = j1 - m1
t5 = j2 + m2
tmin = max(0, max(t1, t2))
tmax = min(t3, min(t4, t5))
tvec = np.arange(tmin, tmax + 1, 1)
wigner = 0
for t in tvec:
wigner += (-1) ** t / (
factorial(t)
* factorial(t - t1)
* factorial(t - t2)
* factorial(t3 - t)
* factorial(t4 - t)
* factorial(t5 - t)
)
return (
wigner
* (-1) ** (j1 - j2 - m3)
* sqrt(
factorial(j1 + j2 - j3)
* factorial(j1 - j2 + j3)
* factorial(-j1 + j2 + j3)
/ factorial(j1 + j2 + j3 + 1)
* factorial(j1 + m1)
* factorial(j1 - m1)
* factorial(j2 + m2)
* factorial(j2 - m2)
* factorial(j3 + m3)
* factorial(j3 - m3)
)
)
[docs]
def Wigner6j(j1, j2, j3, J1, J2, J3, verbose=False):
r"""
Evaluates Wigner 6-j symbol
Args:
j1,j2,j3,J1,J2,J3 (float): parameters of
:math:`\left\{ \begin{matrix}j_1 & j_2 & j_3\
\\ J_1 & J_2 & J_3\end{matrix}\right\}`
"""
# ======================================================================
# Calculating the Wigner6j-Symbols using the Racah-Formula
# Author: Ulrich Krohn
# Date: 13th November 2009
#
# Based upon Wigner3j.m from David Terr, Raytheon
# Reference: http://mathworld.wolfram.com/Wigner6j-Symbol.html
#
# Usage:
# from wigner import Wigner6j
# WignerReturn = Wigner6j(j1,j2,j3,J1,J2,J3)
#
# / j1 j2 j3 \
# < >
# \ J1 J2 J3 /
#
# ======================================================================
# Check that the js and Js are only integer or half integer
if (
(2 * j1 != roundPy2(2 * j1))
| (2 * j2 != roundPy2(2 * j2))
| (2 * j3 != roundPy2(2 * j3))
| (2 * J1 != roundPy2(2 * J1))
| (2 * J2 != roundPy2(2 * J2))
| (2 * J3 != roundPy2(2 * J3))
):
raise ValueError("All arguments must be integers or half-integers.")
# Check if the 4 triads ( (j1 j2 j3), (j1 J2 J3), (J1 j2 J3), (J1 J2 j3) )
# satisfy the triangular inequalities
IsTriangle = True
msg = ""
if (abs(j1 - j2) > j3) | (j1 + j2 < j3):
IsTriangle = False
msg += "(%.1f, %.1f, %.1f) is not triangular\n" % (j1, j2, j3)
if (abs(j1 - J2) > J3) | (j1 + J2 < J3):
IsTriangle = False
msg += "(%.1f, %.1f, %.1f) is not triangular\n" % (j1, J2, J3)
if (abs(J1 - j2) > J3) | (J1 + j2 < J3):
IsTriangle = False
msg += "(%.1f, %.1f, %.1f) is not triangular\n" % (J1, j2, J3)
if (abs(J1 - J2) > j3) | (J1 + J2 < j3):
IsTriangle = False
msg += "(%.1f, %.1f, %.1f) is not triangular\n" % (J1, J2, j3)
if not IsTriangle:
msg = "WARNING!!\n" + msg
msg += (
"For the 6j-Symbol:\n ⎰%3.1f %3.1f %3.1f⎱\n ⎱%3.1f %3.1f %3.1f⎰"
% (j1, j2, j3, J1, J2, J3)
)
if verbose:
print(msg)
return 0
# Check if the sum of the elements of each traid is an integer
SumIsInteger = True
msg = ""
if 2 * roundPy2(j1 + j2 + j3) != roundPy2(2 * (j1 + j2 + j3)):
SumIsInteger = False
msg += "%.1f + %.1f + %.1f is not an integer\n" % (j1, j2, j3)
if 2 * roundPy2(j1 + J2 + J3) != roundPy2(2 * (j1 + J2 + J3)):
SumIsInteger = False
msg += "%.1f + %.1f + %.1f is not an integer\n" % (j1, J2, J3)
if 2 * roundPy2(J1 + j2 + J3) != roundPy2(2 * (J1 + j2 + J3)):
SumIsInteger = False
msg += "%.1f + %.1f + %.1f is not an integer\n" % (J1, j2, J3)
if 2 * roundPy2(J1 + J2 + j3) != roundPy2(2 * (J1 + J2 + j3)):
SumIsInteger = False
msg += "%.1f + %.1f + %.1f is not an integer\n" % (J1, J2, j3)
if not SumIsInteger:
msg = "WARNING!!\n" + msg
msg += (
"For the 6j-Symbol:\n ⎰%3.1f %3.1f %3.1f⎱\n ⎱%3.1f %3.1f %3.1f⎰"
% (j1, j2, j3, J1, J2, J3)
)
msg += "\n6j-Symbol is undefined when any triad has a non-integer sum"
if verbose:
print(msg)
return 0
# if possible, use precalculated values
global wignerPrecal
if wignerPrecal and (
(roundPy2(2 * j2) >= -0.1)
and (roundPy2(2 * j2) <= 2.1)
and (J2 == 1 or J2 == 2)
and (j1 <= wignerPrecalJmax)
and (J3 <= wignerPrecalJmax)
and (abs(roundPy2(j1) - j1) < 0.1)
and (abs(roundPy2(J3) - J3) < 0.1)
and abs(j1 - J3) < 2.1
):
# we have precalculated value
return wignerPrecal6j[
j1,
2 + j1 - J3,
round(roundPy2(2 + 2 * (j3 - j1))),
round(roundPy2(2 + 2 * (J1 - J3))),
J2 - 1,
round(roundPy2(2 * j2)),
]
# print("not in database %1.f %1.f %1.f %1.f %1.f %1.f" % (j1,j2,j3,J1,J2,J3))
if j1 > 50 or j2 > 50 or j3 > 50 or J1 > 50 or J2 > 50 or J3 > 50:
# usual implementation of coefficient calculation that uses factorials
# would fail (overflow). Use instead something slower verion from Sympy
return float(
sympyEvaluate(Wigner6j_sympy(j1, j2, j3, J1, J2, J3).doit())
)
# Arguments for the factorials
t1 = j1 + j2 + j3
t2 = j1 + J2 + J3
t3 = J1 + j2 + J3
t4 = J1 + J2 + j3
t5 = j1 + j2 + J1 + J2
t6 = j2 + j3 + J2 + J3
t7 = j1 + j3 + J1 + J3
# Finding summation borders
tmin = max(0, max(t1, max(t2, max(t3, t4))))
tmax = min(t5, min(t6, t7))
tvec = np.arange(tmin, tmax + 1, 1)
# Calculation the sum part of the 6j-Symbol
WignerReturn = 0
for t in tvec:
WignerReturn += (
(-1) ** t
* factorial(t + 1)
/ (
factorial(t - t1)
* factorial(t - t2)
* factorial(t - t3)
* factorial(t - t4)
* factorial(t5 - t)
* factorial(t6 - t)
* factorial(t7 - t)
)
)
# Calculation of the 6j-Symbol
return WignerReturn * sqrt(
TriaCoeff(j1, j2, j3)
* TriaCoeff(j1, J2, J3)
* TriaCoeff(J1, j2, J3)
* TriaCoeff(J1, J2, j3)
)
def TriaCoeff(a, b, c):
# Calculating the triangle coefficient
return (
factorial(a + b - c)
* factorial(a - b + c)
* factorial(-a + b + c)
/ (factorial(a + b + c + 1))
)
# copied from https://sites.google.com/site/theodoregoetz/notes/wignerdfunction
# Jojann Goetz
def _wignerd(j, m, n=0, approx_lim=10):
"""
Wigner "small d" matrix. (Euler z-y-z convention)
example::
j = 2
m = 1
n = 0
beta = linspace(0,pi,100)
wd210 = _wignerd(j,m,n)(beta)
some conditions have to be met::
j >= 0
-j <= m <= j
-j <= n <= j
The approx_lim determines at what point
bessel functions are used. Default is when::
j > m+10
# and
j > n+10
for integer l and n=0, we can use the spherical harmonics. If in
addition m=0, we can use the ordinary legendre polynomials.
"""
if (j < 0) or (abs(m) > j) or (abs(n) > j):
raise ValueError(
"_wignerd(j = {0}, m = {1}, n = {2}) value error.".format(j, m, n)
+ " Valid range for parameters: j>=0, -j<=m,n<=j."
)
if (j > (m + approx_lim)) and (j > (n + approx_lim)):
# print('bessel (approximation)')
return lambda beta: jv(m - n, j * beta)
if (floor(j) == j) and (n == 0):
if m == 0:
# print('legendre (exact)')
return lambda beta: legendre(j)(cos(beta))
elif False:
# print('spherical harmonics (exact)')
a = sqrt(4.0 * pi / (2.0 * j + 1.0))
return lambda beta: a * conjugate(sph_harm(m, j, beta, 0.0))
jmn_terms = {
j + n: (m - n, m - n),
j - n: (n - m, 0.0),
j + m: (n - m, 0.0),
j - m: (m - n, m - n),
}
k = min(jmn_terms)
a, lmb = jmn_terms[k]
b = 2.0 * j - 2.0 * k - a
if (a < 0) or (b < 0):
raise ValueError(
"_wignerd(j = {0}, m = {1}, n = {2}) value error.".format(j, m, n)
+ " Encountered negative values in (a,b) = ({0},{1})".format(a, b)
)
coeff = (
power(-1.0, lmb)
* sqrt(comb(2.0 * j - k, k + a))
* (1.0 / sqrt(comb(k + b, b)))
)
# print('jacobi (exact)')
return (
lambda beta: coeff
* power(sin(0.5 * beta), a)
* power(cos(0.5 * beta), b)
* jacobi(k, a, b)(cos(beta))
)
def _wignerD(j, m, n=0, approx_lim=10):
"""
Wigner D-function. (Euler z-y-z convention)
This returns a function of 2 to 3 Euler angles:
(alpha, beta, gamma)
gamma defaults to zero and does not need to be
specified.
The approx_lim determines at what point
bessel functions are used. Default is when:
j > m+10
and
j > n+10
usage::
from numpy import linspace, meshgrid
a = linspace(0, 2*pi, 100)
b = linspace(0, pi, 100)
aa,bb = meshgrid(a,b)
j,m,n = 1,1,1
zz = _wignerD(j,m,n)(aa,bb)
"""
return (
lambda alpha, beta, gamma=0: exp(-1j * m * alpha)
* _wignerd(j, m, n, approx_lim)(beta)
* exp(-1j * n * gamma)
)
[docs]
def CG(j1, m1, j2, m2, j3, m3):
r"""
Clebsch–Gordan (CG) coefficients
Args:
j1,m1,j2,m2,j3,m3: parameters of
:math:`\langle j_1, m_1, j_2, m_2 | j_1, j_2, j_3, m_3 \rangle`
"""
return (
Wigner3j(j1, j2, j3, m1, m2, -m3)
* sqrt(2 * j3 + 1)
* (-1) ** (j1 - j2 + m3)
)
[docs]
class WignerDmatrix:
"""
WignerD matrices for different `j` states in a specified rotated basis.
This matrix converts components of angular momentum `j` givne in one
basis into components of angular momentum calculated in the basis
which is rotated by `theta` around y-axis, and then by `phi` around
z-axis. Use::
wgd = WignerDmatrix(theta,phi)
# let's rotate state with angular momentum 1
dMatrix = wgd.get(j)
stateNewBasis = dMatrix.dot(stateOldBasis)
Args:
theta (float): rotation around y-axis
phi (float): rotation around z-axis
gamma (flaot): optional, first rotation around z-axis (rotations are
in order z-y-z, by gamma, theta and phi respectively)
By default 0.
"""
[docs]
def __init__(self, theta, phi, gamma=0.0):
self.matSaved = []
self.matLoc = np.zeros(100, dtype=np.int8)
self.theta = theta
self.phi = phi
self.gamma = gamma
if (
abs(self.theta) < 1e-5
and abs(self.phi) < 1e-5
and abs(self.gamma) < 1e-5
):
self.trivial = True
else:
self.trivial = False
def get(self, j):
"""
WignerD matrix for specified basis for states with angular
momenutum `j`.
Args:
j (float): angular momentum of states.
Returns:
matrix of dimensions (2*j+1,2*j+1).
`state in new basis = wignerDmatrix * state in original basis`
"""
if self.trivial:
return sparse_eye(
round(roundPy2(2.0 * j + 1.0)),
round(roundPy2(2.0 * j + 1.0)),
dtype=np.complex128,
)
savedIndex = self.matLoc[round(roundPy2(2 * j))]
if savedIndex != 0:
return self.matSaved[savedIndex - 1]
# bacause 0 marks no entry; but matrix numbers starts from zero,
# saved Index array is actually offsetted by 1
# else
mat = np.zeros(
(round(roundPy2(2.0 * j + 1.0)), round(roundPy2(2.0 * j + 1.0))),
dtype=np.complex128,
)
jrange = np.linspace(-j, j, round(2 * j) + 1)
maxIndex = round(2 * j) + 1
for index1 in xrange(maxIndex):
for index2 in xrange(maxIndex):
mat[index1, index2] = _wignerD(
j, jrange[index1], jrange[index2]
)(self.phi, self.theta, self.gamma)
mat = csr_matrix(mat)
self.matSaved.append(mat)
self.matLoc[round(roundPy2(2 * j))] = len(self.matSaved)
return mat