# -*- coding: utf-8 -*-
"""
This module provides calculations of single-atom properties.
Included calculations are Stark maps, level plot visualisations,
lifetimes and radiative decays.
"""
from __future__ import print_function
from .alkali_atom_functions import printStateString, _EFieldCoupling, printStateLetter, printStateStringLatex, formatNumberSI
from .divalent_atom_functions import DivalentAtom
import datetime
import sqlite3
import matplotlib
from matplotlib.colors import LinearSegmentedColormap
from math import sqrt
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
import numpy as np
import re
from .wigner import Wigner6j, CG
from scipy.constants import physical_constants, pi, epsilon_0, hbar
from scipy.constants import k as C_k
from scipy.constants import c as C_c
from scipy.constants import h as C_h
from scipy.constants import e as C_e
from scipy.constants import m_e as C_m_e
from scipy.optimize import curve_fit
from scipy import interpolate
# for matrices
from numpy.linalg import eigh
from scipy.sparse import csr_matrix
from scipy.sparse.linalg import eigsh
from scipy.special import sph_harm
import sys
if sys.version_info > (2,):
xrange = range
sqlite3.register_adapter(np.float64, float)
sqlite3.register_adapter(np.float32, float)
sqlite3.register_adapter(np.int64, int)
sqlite3.register_adapter(np.int32, int)
def Ylm(l, m, theta, phi):
return sph_harm(m, l, phi, theta)
[docs]class Wavefunction:
r"""
Calculates and plots electron wavefunctions.
For an example see `wavefunction plotting example snippet`_.
.. _`wavefunction plotting example snippet`:
./ARC_3_0_introduction.html#Wavefunction-calculations-for-Alkali-atom-Rydberg-states
Args:
atom: atom type considered (for example :obj:`Rubidum87()`)
basisStates (array): array of states in fine basis that contribute\
to the state whose wavefunction is requested.
:math:`[[n_1, \ell_1, j_1, m_{j1}], ...]` For efficient
calculation **do not** pass all the possible basis states, but
just the once that have significant contribution to the
reqested state.
coefficients (array): array `[c1, ...]` of complex coefficents
:math:`c_i = \langle \psi_i |\psi\rangle` corresponding to
decomposition of required state :math:`|\psi\rangle` on basis
states :math:`|\psi_i \rangle` .
"""
def __init__(self, atom, basisStates, coefficients):
# n, l, j, mj
self.atom = atom
if (len(basisStates) == 0 or len(basisStates[0]) != 4
or len(basisStates) != len(coefficients)):
raise ValueError("basisStates should be defined as array of"
"states in fine basis [[n1, l1, j1, mj1], ... ]"
"contributing to the required states "
"(do not use unecessarily whole basis) "
"while coefficients corresponding to decomposition "
"of requested state on these basis state "
"should be given as"
"separete array [c1, ...]")
self.basisStates = basisStates
self.coef = coefficients
self.basisWavefunctions = []
for state in self.basisStates:
n = state[0]
l = state[1]
j = state[2]
# calculate radial wavefunction
step = 0.001
r, rWavefunc = atom.radialWavefunction(
l, 0.5, j,
self.atom.getEnergy(n, l, j) / 27.211,
self.atom.alphaC**(1 / 3.0),
2.0 * n * (n + 15.0), step)
suma = np.trapz(rWavefunc**2, x=r)
rWavefunc = rWavefunc / (sqrt(suma))
self.basisWavefunctions.append(
interpolate.interp1d(r, rWavefunc,
bounds_error=False,
fill_value=(0,0))
)
[docs] def getRtimesPsiSpherical(self, theta, phi, r):
r"""
Calculates list of :math:`r \cdot \psi_{m_s} (\theta, \phi, r)`
At point defined by spherical coordinates, returns list of
:math:`r \cdot \psi_{m_s} (\theta, \phi, r)`
wavefunction values for different electron spin projection
values :math:`m_s`.
Coordinates are defined relative to atomic core.
Args:
theta (float): polar angle (angle between :math:`z` axis and
vector pointing towards selected point)
(in units of radians).
phi (float): azimuthal angle (angle between :math:`x` axis and
projection at :math:`x-y` plane of vector pointing towards
selected point) (in units of radians).
r (float): distance between coordinate origin and selected
point. (in atomic units of Bohr radius :math:`a_0`)
Returns:
list of complex values corresponding to
:math:`\psi_{m_s} (\theta, \phi, r)` for different
spin states :math:`m_s` contributing to the state in **decreasing**
order of :math:`m_s`. For example, for :obj:`arc.AlkaliAtom`
returns :math:`r \cdot \psi_{m_s=+1/2} (\theta, \phi, r)` and
:math:`r \cdot \psi_{m_s=-1/2} (\theta, \phi, r) `.
)`
"""
wfElectronP = 0+0j # electron spin +1/2
wfElectronM = 0+0j # electron spin -1/2
for i, state in enumerate(self.basisStates):
l = state[1]
j = state[2]
mj = state[3]
if abs(mj - 0.5) - 0.1 < l:
wfElectronP += CG(l, mj-0.5, 0.5, +0.5, j, mj) \
* Ylm(l, mj-0.5, theta, phi)\
* self.basisWavefunctions[i](r) \
* self.coef[i]
if abs(mj + 0.5) - 0.1 < l:
wfElectronM += CG(l, mj+0.5, 0.5, -0.5, j, mj) \
* Ylm(l, mj+0.5, theta, phi) \
* self.basisWavefunctions[i](r) \
* self.coef[i]
return wfElectronP, wfElectronM
[docs] def getRtimesPsi(self, x, y, z):
r"""
Calculates list of :math:`r \cdot \psi_{m_s} (x, y, z)`
At a point defined by Cartesian coordinates returns list of
:math:`r \cdot \psi_{m_s} (x, y, z)`
wavefunction values for different
electron spin projection values :math:`m_s`.
Args:
x (float): Cartesian coordinates of selected point,
relative to the atom core.
(in atomic units of Bohr radius :math:`a_0`)
y (float): Cartesian coordinates of selected point,
relative to the atom core.
(in atomic units of Bohr radius :math:`a_0`)
z (float): Cartesian coordinates of selected point,
relative to the atom core.
(in atomic units of Bohr radius :math:`a_0`)
Returns:
list of complex values corresponding to
:math:`r \cdot \psi_{m_s} (\theta, \phi, r)` for different
spin states :math:`m_s` contributing to the state in
**decreasing** order of :math:`m_s`.
For example, for :obj:`arc.AlkaliAtom`
returns :math:`r \cdot \psi_{m_s=+1/2} (\theta, \phi, r)` and
:math:`r \cdot \psi_{m_s=-1/2} (\theta, \phi, r)` .
)`, where :math:`r=\sqrt{x^2+y^2+z^2}`.
"""
theta = np.arctan2((x**2 + y**2)**0.5, z)
phi = np.arctan2(y, x)
r = np.sqrt(x**2 + y**2 + z**2)
return self.getRtimesPsiSpherical(theta, phi, r)
[docs] def getPsi(self, x, y, z):
r"""
Calculates list of :math:`\psi_{m_s} (x,y,z)`
At point define by Cartesian coordinates returns list of
:math:`\psi_{m_s} (x,y,z)` wavefunction values corresponding
to different electron spin projection values :math:`m_s`.
Args:
x (float): Cartesian coordinates of selected point,
relative to the atom core.
(in atomic units of Bohr radius :math:`a_0`)
y (float): Cartesian coordinates of selected point,
relative to the atom core.
(in atomic units of Bohr radius :math:`a_0`)
z (float): Cartesian coordinates of selected point,
relative to the atom core.
(in atomic units of Bohr radius :math:`a_0`)
Returns:
list of complex values corresponding to
:math:`\psi_{m_s} (\theta, \phi, r)` for different
spin states :math:`m_s` contributing to the state in
**decreasing** order of :math:`m_s`.
For example, for :obj:`arc.AlkaliAtom`
returns :math:`\psi_{m_s=+1/2} (\theta, \phi, r)` and
:math:`\psi_{m_s=-1/2} (\theta, \phi, r)` .
)`.
"""
r = np.sqrt(x * x + y * y + z * z)
return self.getRtimesPsi(x, y, z) / r
[docs] def getRtimesPsiSquaredInPlane(self,
plane="x-z",
pointsPerAxis=150,
axisLength=None,
units="atomic"
):
r"""
Calculates :math:`|r \cdot \psi|^2` on a mesh in a given plane.
Args:
plane (str): optiona, set's calculation plane to `'x-y'` or
`'x-z'`. Default value `'x-y'`
pointsPerAxis (int): optional, a number of mesh points per
Carthesian axis. Default value of 150, gives a mesh with total
size of :math:`150 \times 150 = 22500` points.
axisLength (float): optional, length of the square in the selected
plane on which wavefunction will be calculated. By default it
is largw enough to fit the whole wavefunction
(in atomic units of Bohr radius :math:`a_0`).
units (str): optional, units of length in which calculated mesh
will be **returned** (note that `axisLength` is on the other
hand always in atomi units.). Supported values are
`'atomic'` or `'nm'`. Default value `'atomic'` .
Returns:
meshCoordinate1, meshCoordinate2 and
:math:`|r \cdot \psi|^2 = \sum_{m_s} |r \cdot \psi_{m_s}|^2`,
where sum is over possible electron spin projection values
:math:`m_s`.
"""
if axisLength is None:
nMax = 1
for state in self.basisStates:
nMax = max(nMax, state[0])
axisLength = 2.0 * 2.0 * nMax * (nMax + 15.0)
coord1 = np.linspace(- axisLength / 2., axisLength / 2., pointsPerAxis)
coord2 = np.linspace(- axisLength / 2., axisLength / 2., pointsPerAxis)
meshCoord1, meshCoord2 = np.meshgrid(coord1, coord2)
coord = []
if (plane == "x-z"):
coord = [meshCoord1, 0, meshCoord2]
elif (plane == "x-y"):
coord = [meshCoord1, meshCoord2, 0]
else:
raise ValueError("Only 'x-y' and 'x-z' planes are supported.")
wfP, wfM = self.getRtimesPsi(*coord)
# change units
if units == "nm":
scale = physical_constants["Bohr radius"][0]*1e9
meshCoord1 *= scale
meshCoord2 *= scale
wfP /= scale
wfM /= scale
elif units == "atomic":
pass
else:
raise ValueError("Only 'atomic' (a_0) and 'nm' are recognised"
"as possible units. Received: %s" % units)
f = np.power(np.abs(wfP), 2) + np.power(np.abs(wfM), 2)
return meshCoord1, meshCoord2, f
[docs] def plot2D(self,
plane="x-z",
pointsPerAxis=150,
axisLength = None,
units="atomic",
colorbar=True, labels=True):
r"""
2D colour plot of :math:`|r \cdot \psi|^2` wavefunction in a
requested plane.
Args:
plane (str): optiona, set's calculation plane to `'x-y'` or `'x-z'`.
Default value `'x-y'`
pointsPerAxis (int): optional, a number of mesh points per Carthesian
axis. Default value of 150, gives a mesh with total size of
:math:`150 \times 150 = 22500` points.
axisLength (float): optional, length of the square in the selected
plane on which wavefunction will be calculated. By default it
is large enough to fit the whole wavefunction
(in atomic units of Bohr radius :math:`a_0`).
units (str): optional, units of length in which calculated mesh
will be **returned** (note that `axisLength` is on the other
hand always in atomi units.). Supported values are
`'atomic'` or `'nm'`. Default value `'atomic'` .
colorbar (bool): optional, determens if the colour bar scale of
should be shown. Default value is `True`.
labels (bool): optional, determines if the labels on the axis
of the plot should be shown. Default value is `True`.
Returns:
:obj:`matplotlib.pyplot.figure` object with a requested plot. Use `show()`
method to see figure.
"""
x,y,f = self.getRtimesPsiSquaredInPlane(plane=plane,
pointsPerAxis=pointsPerAxis,
axisLength=axisLength,
units=units)
fig = plt.figure(figsize=(6,4))
ax = fig.add_subplot(1,1,1)
cp = ax.pcolor(x, y, f,
vmin=0, vmax=f.max(), cmap='viridis')
if labels:
if units=="atomic":
unitLabel = r"$a_0$"
else:
unitLabel = "nm"
if plane=="x-y":
plt.xlabel(r"$x$ (%s)" % unitLabel)
plt.ylabel(r"$y$ (%s)" % unitLabel)
elif plane=="x-z":
plt.xlabel(r"$x$ (%s)" % unitLabel)
plt.ylabel(r"$z$ (%s)" % unitLabel)
else:
raise ValueError("Only 'atomic' (a_0) and 'nm' are recognised"
"as possible units. Received: %s" % units)
ax.set_aspect('equal', 'box')
if colorbar:
cb = fig.colorbar(cp)
cb.set_label(r'$|r\cdot\psi(x,y,z)|^2$') # NOTE: change label if plotting Imaginart part!
return fig
# return figure
[docs] def plot3D(self,
plane="x-z",
pointsPerAxis=150,
axisLength = None,
units="atomic",
labels=True):
r"""
3D colour surface plot of :math:`|r \cdot \psi|^2` wavefunction in a
requested plane.
Args:
plane (str): optiona, set's calculation plane to `'x-y'` or `'x-z'`.
Default value `'x-y'`
pointsPerAxis (int): optional, a number of mesh points per Carthesian
axis. Default value of 150, gives a mesh with total size of
:math:`150 \times 150 = 22500` points.
axisLength (float): optional, length of the square in the selected
plane on which wavefunction will be calculated. By default it
is large enough to fit the whole wavefunction
(in atomic units of Bohr radius :math:`a_0`).
units (str): optional, units of length in which calculated mesh
will be **returned** (note that `axisLength` is on the other
hand always in atomi units.). Supported values are
`'atomic'` or `'nm'`. Default value `'atomic'` .
labels (bool): optional, determines if the labels on the axis
of the plot should be shown. Default value is `True`.
Returns:
:obj:`matplotlib.pyplot.figure` object with a requested plot. Use `show()`
method to see figure.
"""
x, y, f = self.getRtimesPsiSquaredInPlane(plane=plane,
pointsPerAxis=pointsPerAxis,
axisLength=axisLength,
units=units)
fig = plt.figure(figsize=(6,4))
ax = fig.gca(projection='3d')
ax.view_init(40, -35)
# Plot the surface.
ax.plot_surface(x, y, f, cmap='Reds',
vmin=0, vmax=f.max(),
linewidth=0, antialiased=False,
rstride=1, cstride=1)
ax.plot_wireframe(x, y, f,
rstride=10, cstride=10,
alpha=0.05, color="k")
if labels:
if units=="atomic":
unitLabel = r"$a_0$"
else:
unitLabel = "nm"
if plane=="x-y":
plt.xlabel(r"$x$ (%s)" % unitLabel)
plt.ylabel(r"$y$ (%s)" % unitLabel)
elif plane=="x-z":
plt.xlabel(r"$x$ (%s)" % unitLabel)
plt.ylabel(r"$z$ (%s)" % unitLabel)
else:
raise ValueError("Only 'atomic' (a_0) and 'nm' are recognised"
"as possible units. Received: %s" % units)
plt.xlim(x.min(),x.max())
plt.ylim(y.min(),y.max())
return fig
[docs]class StarkMap:
"""
Calculates Stark maps for single atom in a field
This initializes calculation for the atom of a given type. For details
of calculation see Zimmerman [1]_. For a quick working example
see `Stark map example snippet`_.
Args:
atom (:obj:`arc.alkali_atom_functions.AlkaliAtom` or :obj:`arc.divalent_atom_functions.DivalentAtom`): ={
:obj:`arc.alkali_atom_data.Lithium6`,
:obj:`arc.alkali_atom_data.Lithium7`,
:obj:`arc.alkali_atom_data.Sodium`,
:obj:`arc.alkali_atom_data.Potassium39`,
:obj:`arc.alkali_atom_data.Potassium40`,
:obj:`arc.alkali_atom_data.Potassium41`,
:obj:`arc.alkali_atom_data.Rubidium85`,
:obj:`arc.alkali_atom_data.Rubidium87`,
:obj:`arc.alkali_atom_data.Caesium`,
:obj:`arc.divalent_atom_data.Strontium88`,
:obj:`arc.divalent_atom_data.Calcium40`
:obj:`arc.divalent_atom_data.Ytterbium174` }
Select the alkali metal for energy level
diagram calculation
Examples:
State :math:`28~S_{1/2}~|m_j|=0.5` polarizability calculation
>>> from arc import *
>>> calc = StarkMap(Caesium())
>>> calc.defineBasis(28, 0, 0.5, 0.5, 23, 32, 20)
>>> calc.diagonalise(np.linspace(00.,6000,600))
>>> print("%.5f MHz cm^2 / V^2 " % calc.getPolarizability())
0.76705 MHz cm^2 / V^2
Stark map calculation
>>> from arc import *
>>> calc = StarkMap(Caesium())
>>> calc.defineBasis(28, 0, 0.5, 0.5, 23, 32, 20)
>>> calc.diagonalise(np.linspace(00.,60000,600))
>>> calc.plotLevelDiagram()
>>> calc.showPlot()
<< matplotlib plot will open containing a Stark map >>
Examples:
**Advanced interfacing of Stark map calculations (StarkMap class)**
Here we show one easy way to obtain the Stark matrix (from diagonal
:obj:`mat1` and off-diagonal part :obj:`mat2` ) and basis states
(stored in :obj:`basisStates` ), if this middle-product of the
calculation is needed for some code build on top of the existing
ARC package.
>>> from arc import *
>>> calc = StarkMap(Caesium())
>>> calc.defineBasis(28, 0, 0.5, 0.5, 23, 32, 20)
>>> # Now we have matrix and basis states, that we can used in our own code
>>> # Let's say we want Stark map at electric field of 0.2 V/m
>>> eField = 0.2 # V/m
>>> # We can easily extract Stark matrix
>>> # as diagonal matrix (state detunings)
>>> # + off-diagonal matrix (propotional to electric field)
>>> matrix = calc.mat1+calc.mat2*eField
>>> # and the basis states as array [ [n,l,j,mj] , ...]
>>> basisStates = calc.basisStates
>>> # you can do your own calculation now...
References:
.. [1] M. L. Zimmerman et.al, PRA **20**:2251 (1979)
https://doi.org/10.1103/PhysRevA.20.2251
.. _`Stark map example snippet`:
./Rydberg_atoms_a_primer.html#Rydberg-Atom-Stark-Shifts
"""
def __init__(self, atom):
self.atom = atom
self.basisStates = []
"""
List of basis states for calculation in the form [ [n,l,j,mj], ...].
Calculated by :obj:`defineBasis` .
"""
self.mat1 = []
"""
diagonal elements of Stark-matrix (detuning of states) calculated by
:obj:`defineBasis` in the basis :obj:`basisStates`.
"""
self.mat2 = []
"""
off-diagonal elements of Stark-matrix divided by electric
field value. To get off diagonal elemements multiply this matrix
with electric field value. Full Stark matrix is obtained as
`fullStarkMatrix` = :obj:`mat1` + :obj:`mat2` *`eField`. Calculated by
:obj:`defineBasis` in the basis :obj:`basisStates`.
"""
self.indexOfCoupledState = []
"""
Index of coupled state (initial state passed to :obj:`defineBasis`)
in :obj:`basisStates` list of basis states
"""
# finding energy levels
self.eFieldList = []
"""
Saves electric field (in units of V/m) for which energy levels are calculated
See also:
:obj:`y`, :obj:`highlight`, :obj:`diagonalise`
"""
self.y = [] # eigenValues
"""
`y[i]` is an array of eigenValues corresponding to the energies of the
atom states at the electric field `eFieldList[i]`. For example `y[i][j]` is
energy of the `j` eigenvalue (energy of the state) measured in
cm :math:`{}^{-1}` relative to the ionization threshold.
See also:
:obj:`eFieldList`, :obj:`highlight`, :obj:`diagonalise`
"""
self.highlight = [
] # contribution of initial state there (overlap |<original state | given state>|^2)
"""
`highlight[i]` is an array of values measuring highlighted feature in the
eigenstates at electric field intensity `eFieldList[i]`. E.g. `highlight[i][j]`
measures highlighted feature of the state with energy `y[i][j]` at electric
field `eFieldList[i]`. What will be highlighted feature is defined in the
call of :obj:`diagonalise` (see that part of documentation for details).
See also:
:obj:`eFieldList`, :obj:`y`, :obj:`diagonalise`
"""
#: pointer towards matplotlib figure after :obj:`plotLevelDiagram`
#: is called to create figure
self.fig = 0
#: pointer towards matplotlib figure axis after :obj:`plotLevelDiagram`
#: is called to create figure
self.ax = 0
# values used for fitting polarizability, and fit
self.fitX = []
self.fitY = []
self.fittedCurveY = []
self.drivingFromState = [0, 0, 0, 0, 0]
self.maxCoupling = 0.
# STARK memoization
self.eFieldCouplingSaved = False
#: spin manifold in which we are working
#: default value of 0.5 is correct for Alkaline Atoms. Otherwise it has
#: to be specified when calling `defineBasis` as `s=0` or `s=1` for
#: singlet and triplet states respectively
self.s = 0.5
def _eFieldCouplingDivE(self, n1, l1, j1, mj1, n2, l2, j2, mj2, s=0.5):
# eFied coupling devided with E (witout actuall multiplication to getE)
# delta(mj1,mj2') delta(l1,l2+-1)
if ((abs(mj1 - mj2) > 0.1) or (abs(l1 - l2) != 1)):
return 0
# matrix element
result = self.atom.getRadialMatrixElement(n1, l1, j1,
n2, l2, j2,
s=s) *\
physical_constants["Bohr radius"][0] * C_e
sumPart = self.eFieldCouplingSaved.getAngular(l1, j1, mj1,
l2, j2, mj2,
s=s)
return result * sumPart
def _eFieldCoupling(self, n1, l1, j1, mj1, n2, l2, j2, mj2, eField, s=0.5):
return self._eFieldCouplingDivE(n1, l1, j1, mj1,
n2, l2, j2, mj2,
s=s) * eField
[docs] def defineBasis(self, n, l, j, mj, nMin, nMax, maxL, Bz=0,
progressOutput=False, debugOutput=False, s=0.5):
"""
Initializes basis of states around state of interest
Defines basis of states for further calculation. :math:`n,l,j,m_j`
specify state whose neighbourhood and polarizability we want
to explore. Other parameters specify basis of calculations.
This method stores basis in :obj:`basisStates`, while corresponding
interaction matrix is stored in two parts. First part is diagonal
electric-field independent part stored in :obj:`mat1`, while the
second part :obj:`mat2` corresponds to off-diagonal elements that are
propotional to electric field. Overall interaction matrix for
electric field `eField` can be then obtained as
`fullStarkMatrix` = :obj:`mat1` + :obj:`mat2` *`eField`
Args:
n (int): principal quantum number of the state
l (int): angular orbital momentum of the state
j (flaot): total angular momentum of the state
mj (float): projection of total angular momentum of the state
nMin (int): *minimal* principal quantum number of the states to
be included in the basis for calculation
nMax (int): *maximal* principal quantum number of the states to
be included in the basis for calculation
maxL (int): *maximal* value of orbital angular momentum for the
states to be included in the basis for calculation
Bz (float): optional, magnetic field directed along z-axis in
units of Tesla. Calculation will be correct only for weak
magnetic fields, where paramagnetic term is much stronger
then diamagnetic term. Diamagnetic term is neglected.
progressOutput (:obj:`bool`, optional): if True prints the
progress of calculation; Set to false by default.
debugOutput (:obj:`bool`, optional): if True prints additional
information usefull for debuging. Set to false by default.
s (float): optional. Total spin angular momentum for the state.
Default value of 0.5 is correct for Alkaline Atoms, but
value **has to** be specified explicitly for divalent atoms
(e.g. `s=0` or `s=1` for singlet and triplet states,
that have total spin angular momenutum equal to 0 or 1
respectively).
"""
global wignerPrecal
wignerPrecal = True
self.eFieldCouplingSaved = _EFieldCoupling()
states = []
# save calculation details START
self.n = n
self.l = l
self.j = j
self.mj = mj
self.nMin = nMin
self.nMax = nMax
self.maxL = maxL
self.Bz = Bz
self.s = s
# save calculation details END
for tn in xrange(nMin, nMax):
for tl in xrange(min(maxL + 1, tn)):
for tj in np.linspace(tl - s, tl + s, round(2 * s + 1)):
if (abs(mj) - 0.1 <= tj) and (
tn >= self.atom.groundStateN
or [tn, tl, tj] in self.atom.extraLevels
):
states.append([tn, tl, tj, mj])
dimension = len(states)
if progressOutput:
print("Found ", dimension, " states.")
if debugOutput:
print(states)
indexOfCoupledState = 0
index = 0
for st in states:
if (st[0] == n) and (abs(st[1] - l) < 0.1) and (abs(st[2] - j) < 0.1) and\
(abs(st[3] - mj) < 0.1):
indexOfCoupledState = index
index += 1
if debugOutput:
print("Index of initial state")
print(indexOfCoupledState)
print("Initial state = ")
print(states[indexOfCoupledState])
self.mat1 = np.zeros((dimension, dimension), dtype=np.double)
self.mat2 = np.zeros((dimension, dimension), dtype=np.double)
self.basisStates = states
self.indexOfCoupledState = indexOfCoupledState
if progressOutput:
print("Generating matrix...")
progress = 0.
for ii in xrange(dimension):
if progressOutput:
progress += ((dimension - ii) * 2 - 1)
sys.stdout.write("\r%d%%" %
(float(progress) / float(dimension**2) * 100))
sys.stdout.flush()
# add diagonal element
self.mat1[ii][ii] = self.atom.getEnergy(states[ii][0],
states[ii][1],
states[ii][2],
s=self.s)\
* C_e / C_h * 1e-9 \
+ self.atom.getZeemanEnergyShift(
states[ii][1],
states[ii][2],
states[ii][3],
self.Bz,
s=self.s) / C_h * 1.0e-9
# add off-diagonal element
for jj in xrange(ii + 1, dimension):
coupling = self._eFieldCouplingDivE(states[ii][0], states[ii][1],
states[ii][2], mj,
states[jj][0],
states[jj][1],
states[jj][2], mj,
s=self.s) *\
1.e-9 / C_h
self.mat2[jj][ii] = coupling
self.mat2[ii][jj] = coupling
if progressOutput:
print("\n")
if debugOutput:
print(self.mat1 + self.mat2)
print(self.mat2[0])
self.atom.updateDipoleMatrixElementsFile()
self.eFieldCouplingSaved._closeDatabase()
self.eFieldCouplingSaved = False
return 0
[docs] def diagonalise(self, eFieldList, drivingFromState=[0, 0, 0, 0, 0],
progressOutput=False, debugOutput=False,
upTo=4, totalContributionMax=0.95):
"""
Finds atom eigenstates in a given electric field
Eigenstates are calculated for a list of given electric fields. To
extract polarizability of the originaly stated state see
:obj:`getPolarizability` method. Results are saved in
:obj:`eFieldList`, :obj:`y` and :obj:`highlight`.
Args:
eFieldList (array): array of electric field strength (in V/m)
for which we want to know energy eigenstates
progressOutput (:obj:`bool`, optional): if True prints the
progress of calculation; Set to false by default.
debugOutput (:obj:`bool`, optional): if True prints additional
information usefull for debuging. Set to false by default.
upTo ('int', optional): Number of top contributing bases states
to be saved into composition attribute; Set to 4 by default.
To keep all contributing states, set upTo = -1.
totalContributionMax ('float', optional): Ceiling for
contribution to the wavefunction from basis states included
in composition attribute. Composition will contain a list
of [coefficient, state index] pairs for top contributing
unperturbed basis states until the number of states reaches
upTo or their total contribution reaches totalContributionMax,
whichever comes first. totalContributionMax is ignored if
upTo = -1.
"""
# if we are driving from some state
# ========= FIND LASER COUPLINGS (START) =======
coupling = []
dimension = len(self.basisStates)
self.maxCoupling = 0.
self.drivingFromState = drivingFromState
if (self.drivingFromState[0] != 0):
if progressOutput:
print("Finding driving field coupling...")
# get first what was the state we are calculating coupling with
state1 = drivingFromState
n1 = int(round(state1[0]))
l1 = int(round(state1[1]))
j1 = state1[2]
m1 = state1[3]
q = state1[4]
for i in xrange(dimension):
thisCoupling = 0.
if progressOutput:
sys.stdout.write("\r%d%%" %
(i / float(dimension - 1) * 100.))
sys.stdout.flush()
if (int(abs(self.basisStates[i][1] - l1)) == 1)and\
(int(abs(self.basisStates[i][2] - j1)) <= 1) and\
(int(abs(self.basisStates[i][3] - m1 - q)) == 0):
state2 = self.basisStates[i]
n2 = int(state2[0])
l2 = int(state2[1])
j2 = state2[2]
m2 = state2[3]
if debugOutput:
print(n1, " ", l1, " ", j1, " ", m1, " < - ", q, " - >", n2, " ",
l2, " ", j2, " ", m2, "\n")
dme = self.atom.getDipoleMatrixElement(n1, l1, j1, m1,
n2, l2, j2, m2,
q,
s=self.s)
thisCoupling += dme
thisCoupling = abs(thisCoupling)**2
if thisCoupling > self.maxCoupling:
self.maxCoupling = thisCoupling
if (thisCoupling > 0.00000001) and debugOutput:
print("coupling = ", thisCoupling)
coupling.append(thisCoupling)
if progressOutput:
print("\n")
if self.maxCoupling < 0.00000001:
raise Exception("State that you specified in drivingFromState, for a " +
"given laser polarization, is uncoupled from the specified Stark " +
"manifold. If you just want to see the specified Stark manifold " +
"remove driveFromState optional argument from call of function " +
"diagonalise. Or specify state and driving that is coupled " +
"to a given manifold to see coupling strengths.")
# ========= FIND LASER COUPLINGS (END) =======
indexOfCoupledState = self.indexOfCoupledState
self.eFieldList = eFieldList
self.y = []
self.highlight = []
self.composition = []
if progressOutput:
print("Finding eigenvectors...")
progress = 0.
for eField in eFieldList:
if progressOutput:
progress += 1.
sys.stdout.write("\r%d%%" %
(float(progress) / float(len(eFieldList)) * 100))
sys.stdout.flush()
m = self.mat1 + self.mat2 * eField
ev, egvector = eigh(m)
self.y.append(ev)
if (drivingFromState[0] < 0.1):
sh = []
comp = []
for i in xrange(len(ev)):
sh.append(abs(egvector[indexOfCoupledState, i])**2)
comp.append(self._stateComposition2(egvector[:, i],
upTo=upTo,
totalContributionMax=totalContributionMax))
self.highlight.append(sh)
self.composition.append(comp)
else:
sh = []
comp = []
for i in xrange(len(ev)):
sumCoupledStates = 0.
for j in xrange(dimension):
sumCoupledStates += abs(coupling[j] / self.maxCoupling) *\
abs(egvector[j, i]**2)
comp.append(self._stateComposition2(egvector[:, i],
upTo=upTo,
totalContributionMax=totalContributionMax))
sh.append(sumCoupledStates)
self.highlight.append(sh)
self.composition.append(comp)
if progressOutput:
print("\n")
return
[docs] def exportData(self, fileBase, exportFormat="csv"):
"""
Exports StarkMap calculation data.
Only supported format (selected by default) is .csv in a
human-readable form with a header that saves details of calculation.
Function saves three files: 1) `filebase` _eField.csv;
2) `filebase` _energyLevels
3) `filebase` _highlight
For more details on the format, see header of the saved files.
Args:
filebase (string): filebase for the names of the saved files
without format extension. Add as a prefix a directory path
if necessary (e.g. saving outside the current working directory)
exportFormat (string): optional. Format of the exported file. Currently
only .csv is supported but this can be extended in the future.
"""
fmt = 'on %Y-%m-%d @ %H:%M:%S'
ts = datetime.datetime.now().strftime(fmt)
commonHeader = "Export from Alkali Rydberg Calculator (ARC) %s.\n" % ts
commonHeader += ("\n *** Stark Map for %s %s m_j = %d/2. ***\n\n" % (self.atom.elementName,
printStateString(self.n, self.l, self.j), int(round(2. * self.mj))))
commonHeader += (" - Included states - principal quantum number (n) range [%d-%d].\n" %
(self.nMin, self.nMax))
commonHeader += (" - Included states with orbital momentum (l) in range [%d,%d] (i.e. %s-%s).\n" %
(0, self.maxL, printStateLetter(0), printStateLetter(self.maxL)))
commonHeader += (" - Calculated in manifold where total spin angular momentum is s = %.1d\n" %
(self.s))
if self.drivingFromState[0] < 0.1:
commonHeader += " - State highlighting based on the relative contribution \n" +\
" of the original state in the eigenstates obtained by diagonalization."
else:
commonHeader += (" - State highlighting based on the relative driving strength \n" +
" to a given energy eigenstate (energy level) from state\n" +
" %s m_j =%d/2 with polarization q=%d.\n" %
(printStateString(*self.drivingFromState[0:3]),
int(round(2. * self.drivingFromState[3])),
self.drivingFromState[4]))
if exportFormat == "csv":
print("Exporting StarkMap calculation results as .csv ...")
commonHeader += " - Export consists of three (3) files:\n"
commonHeader += (" 1) %s,\n" %
(fileBase + "_eField." + exportFormat))
commonHeader += (" 2) %s,\n" %
(fileBase + "_energyLevels." + exportFormat))
commonHeader += (" 3) %s.\n\n" %
(fileBase + "_highlight." + exportFormat))
filename = fileBase + "_eField." + exportFormat
np.savetxt(filename,
self.eFieldList, fmt='%.18e', delimiter=', ',
newline='\n',
header=(commonHeader + " - - - eField (V/m) - - -"),
comments='# ')
print(" Electric field values (V/m) saved in %s" % filename)
filename = fileBase + "_energyLevels." + exportFormat
headerDetails = " NOTE : Each row corresponds to eigenstates for a single specified electric field"
np.savetxt(filename,
self.y, fmt='%.18e', delimiter=', ',
newline='\n',
header=(commonHeader +
' - - - Energy (GHz) - - -\n' + headerDetails),
comments='# ')
print(
" Lists of energies (in GHz relative to ionisation) saved in %s" % filename)
filename = fileBase + "_highlight." + exportFormat
np.savetxt(filename,
self.highlight, fmt='%.18e', delimiter=', ',
newline='\n',
header=(
commonHeader + ' - - - Highlight value (rel.units) - - -\n' + headerDetails),
comments='# ')
print(" Highlight values saved in %s" % filename)
print("... data export finished!")
else:
raise ValueError("Unsupported export format (.%s)." % format)
[docs] def plotLevelDiagram(self, units='cm', highlightState=True, progressOutput=False,
debugOutput=False, highlightColour='red',
addToExistingPlot=False):
r"""
Makes a plot of a stark map of energy levels
To save this plot, see :obj:`savePlot`. To print this plot see
:obj:`showPlot`. Pointers (handles) towards matplotlib figure
and axis used are saved in :obj:`fig` and :obj:`ax` variables
respectively.
Args:
units (:obj:`char`,optional): possible values {'*cm*','GHz','eV'};
[case insensitive] if the string contains 'cm' (default) Stark
diagram will be plotted in energy units cm :math:`{}^{-1}`; if
value is 'GHz', Stark diagram will be plotted as energy
:math:`/h` in units of GHz; if the value is 'eV', Stark diagram
will be plotted as energy in units eV.
highlightState (:obj:`bool`, optional): False by default. If
True, scatter plot colour map will map in red amount of
original state for the given eigenState
progressOutput (:obj:`bool`, optional): if True prints the
progress of calculation; Set to False by default.
debugOutput (:obj:`bool`, optional): if True prints additional
information usefull for debuging. Set to False by default.
addToExistingPlot (:obj:`bool`, optional): if True adds points to
existing old plot. Note that then interactive plotting
doesn't work. False by default.
"""
rvb = LinearSegmentedColormap.from_list('mymap',
['0.9', highlightColour, 'black'])
# for back-compatibilirt with versions <= 3.0.11
# where units were chosen as integer 1 or 2
if not isinstance(units, str):
units = ["ev", "ghz", "cm"][units-1]
if units.lower() == 'ev':
self.units = 'eV'
self.scaleFactor = 1e9 * C_h / C_e
Elabel = '';
elif units.lower() == 'ghz':
self.units = 'GHz'
self.scaleFactor = 1
Elabel = '/h'
elif 'cm' in units.lower():
self.units = 'cm$^{-1}$'
self.scaleFactor = 1e9 / (C_c * 100)
Elabel = '/(h c)'
self.addToExistingPlot = addToExistingPlot
if progressOutput:
print("plotting...")
originalState = self.basisStates[self.indexOfCoupledState]
n = originalState[0]
l = originalState[1]
j = originalState[2]
existingPlot = False
if (self.fig == 0 or not addToExistingPlot):
if (self.fig != 0):
plt.close()
self.fig, self.ax = plt.subplots(1, 1, figsize=(11., 5))
else:
existingPlot = True
eFieldList = []
y = []
yState = []
for br in xrange(len(self.y)):
for i in xrange(len(self.y[br])):
eFieldList.append(self.eFieldList[br])
y.append(self.y[br][i])
yState.append(self.highlight[br][i])
yState = np.array(yState)
sortOrder = yState.argsort(kind='heapsort')
eFieldList = np.array(eFieldList)
y = np.array(y)
eFieldList = eFieldList[sortOrder]
y = y[sortOrder]
yState = yState[sortOrder]
if not highlightState:
self.ax.scatter(eFieldList / 100., y * self.scaleFactor,
s=1, color="k", picker=5)
else:
cm = rvb
cNorm = matplotlib.colors.Normalize(vmin=0., vmax=1.)
self.ax.scatter(eFieldList / 100, y * self.scaleFactor,
c=yState, s=5, norm=cNorm, cmap=cm, lw=0, picker=5)
if not existingPlot:
cax = self.fig.add_axes([0.91, 0.1, 0.02, 0.8])
cb = matplotlib.colorbar.ColorbarBase(
cax, cmap=cm, norm=cNorm)
if (self.drivingFromState[0] < 0.1):
cb.set_label(r"$|\langle %s | \mu \rangle |^2$" %
printStateStringLatex(n, l, j,s=self.s))
else:
cb.set_label(r"$( \Omega_\mu | \Omega )^2$")
self.ax.set_xlabel("Electric field (V/cm)")
eV2GHz = C_e / C_h * 1e-9;
halfY = 300; #GHz, half Y range
upperY = (self.atom.getEnergy(n, l, j, s=self.s) * eV2GHz + halfY) * self.scaleFactor
lowerY = (self.atom.getEnergy(n, l, j, s=self.s) * eV2GHz - halfY) * self.scaleFactor
self.ax.set_ylabel(r"State energy, $E%s$ (%s)"%(Elabel, self.units))
self.ax.set_ylim(lowerY, upperY)
##
self.ax.set_xlim(min(eFieldList) / 100., max(eFieldList) / 100.)
return 0
[docs] def savePlot(self, filename="StarkMap.pdf"):
"""
Saves plot made by :obj:`plotLevelDiagram`
Args:
filename (:obj:`str`, optional): file location where the plot
should be saved
"""
if (self.fig != 0):
self.fig.savefig(filename, bbox_inches='tight')
else:
print("Error while saving a plot: nothing is plotted yet")
return 0
[docs] def showPlot(self, interactive=True):
"""
Shows plot made by :obj:`plotLevelDiagram`
"""
if (self.fig != 0):
if interactive:
if self.addToExistingPlot:
print("NOTE: Interactive plotting doesn't work with"
" addToExistingPlot option set to True"
"\nPlease turn off this option in plotLevelDiagram.\n")
else:
self.ax.set_title(
"Click on state to see state composition")
self.clickedPoint = 0
self.fig.canvas.draw()
self.fig.canvas.mpl_connect('pick_event', self._onPick)
plt.show()
else:
print("Error while showing a plot: nothing is plotted yet")
return 0
def _onPick(self, event):
if isinstance(event.artist, matplotlib.collections.PathCollection):
scaleFactor = self.scaleFactor
x = event.mouseevent.xdata * 100.
y = event.mouseevent.ydata / scaleFactor
i = np.searchsorted(self.eFieldList, x)
if i == len(self.eFieldList):
i -= 1
if ((i > 0) and (abs(self.eFieldList[i - 1] - x) < abs(self.eFieldList[i] - x))):
i -= 1
j = 0
for jj in xrange(len(self.y[i])):
if (abs(self.y[i][jj] - y) < abs(self.y[i][j] - y)):
j = jj
# now choose the most higlighted state in this area
distance = abs(self.y[i][j] - y) * 1.5
for jj in xrange(len(self.y[i])):
if (abs(self.y[i][jj] - y) < distance and
(abs(self.highlight[i][jj]) > abs(self.highlight[i][j]))):
j = jj
if (self.clickedPoint != 0):
self.clickedPoint.remove()
self.clickedPoint, = self.ax.plot([self.eFieldList[i] / 100.],
[self.y[i][j] * scaleFactor], "bs",
linewidth=0, zorder=3)
self.ax.set_title(("[%s] = " % self.atom.elementName) +
self._stateComposition(self.composition[i][j]) +
(" Colourbar value = %.2f" %
self.highlight[i][j]),
fontsize=11)
event.canvas.draw()
def _stateComposition(self, stateVector):
i = 0
totalContribution = 0
value = "$"
while (i < len(stateVector)) and (totalContribution < 0.95):
if (i != 0 and stateVector[i][0] > 0):
value += "+"
value = value + ("%.2f" % stateVector[i][0]) +\
self._addState(*self.basisStates[stateVector[i][1]])
totalContribution += abs(stateVector[i][0])**2
i += 1
if totalContribution < 0.999:
value += "+\\ldots"
return value + "$"
def _stateComposition2(self, stateVector, upTo=300,totalContributionMax = 0.999):
contribution = np.absolute(stateVector)
order = np.argsort(contribution, kind='heapsort')
index = -1
totalContribution = 0
mainStates = [] # [state Value, state index]
if upTo == -1:
for index in range(len(order)):
i = order[-index-1]
mainStates.append([stateVector[i], i])
else:
while (index > -upTo) and (totalContribution < totalContributionMax):
i = order[index]
mainStates.append([stateVector[i], i])
totalContribution += contribution[i]**2
index -= 1
return mainStates
def _addState(self, n1, l1, j1, mj1):
if abs(self.s - 0.5) < 0.1:
# we have Alkali Atoms
return "|%s m_j=%d/2\\rangle" %\
(printStateStringLatex(n1, l1, j1), int(2 * mj1))
else:
# we have singlets or triplets states of divalent atoms
return "|%s m_j=%d\\rangle" %\
(printStateStringLatex(n1, l1, j1, s=self.s), int(mj1))
[docs] def getPolarizability(self, maxField=1.e10, showPlot=False,
debugOutput=False, minStateContribution=0.0):
r"""
Returns the polarizability of the state (set during the
initalization process).
Fits offset of the energy level of the state to
:math:`\frac{1}{2} \alpha_0 E^2`, where
:math:`E` is the applied static electric field,
and returns fitted value :math:`\alpha_0`
Parameters:
maxField (:obj:`float`, optional):
maximum field (in V/m) to be
used for fitting the polarizability. By default, max field
is very large, so it will use eigenvalues calculated in the
whole range.
showPlot (:obj:`bool`, optional):
shows plot of calculated
eigenValues of the given state (dots), and the fit (solid
line) for extracting polarizability
debugOutput (:obj:`bool`, optional):
if True prints additional
information usefull for debuging. Set to false by default.
Returns:
float: scalar polarizability in units of MHz cm :math:`^2` / V \
:math:`^2`
"""
if (self.drivingFromState[0] != 0):
raise Exception("Program can only find Polarizability of the original " +
"state if you highlight original state. You can do so by NOT " +
"specifying drivingFromState in diagonalise function.")
eFieldList = self.eFieldList
yState = self.highlight
y = self.y
originalState = self.basisStates[self.indexOfCoupledState]
n = originalState[0]
l = originalState[1]
j = originalState[2]
energyOfOriginalState = self.atom.getEnergy(
n, l, j, s=self.s) * C_e / C_h * 1e-9 # in GHz
if debugOutput:
print("finding original state for each electric field value")
stopFitIndex = 0
while stopFitIndex < len(eFieldList) - 1 and \
eFieldList[stopFitIndex] < maxField:
stopFitIndex += 1
xOriginalState = []
yOriginalState = []
for ii in xrange(stopFitIndex):
maxPortion = 0.
yval = 0.
jj = 0
for jj in xrange(len(y[ii])):
if yState[ii][jj] > maxPortion:
maxPortion = yState[ii][jj]
yval = y[ii][jj]
# measure state energy relative to the original state
if (minStateContribution < maxPortion):
xOriginalState.append(eFieldList[ii])
yOriginalState.append(yval - energyOfOriginalState)
xOriginalState = np.array(xOriginalState) / 100. # converts to V/cm
yOriginalState = np.array(yOriginalState) # in GHz
# in GHz
uppery = 5.0
lowery = -5.0
if debugOutput:
print("found ", len(xOriginalState))
if showPlot:
self.fig, self.ax = plt.subplots(1, 1, figsize=(6.5, 3))
self.ax.scatter(xOriginalState, yOriginalState, s=2, color="k")
self.ax.set_xlabel("E field (V/cm)")
self.ax.set_ylim(lowery, uppery)
self.ax.set_ylabel(r"Energy/$h$ (GHz)")
self.ax.set_xlim(xOriginalState[0],
xOriginalState[-1])
def polarizabilityFit(eField, offset, alpha):
return offset - 0.5 * alpha * eField**2
try:
popt, pcov = curve_fit(polarizabilityFit,
xOriginalState,
yOriginalState,
[0, 0])
except Exception as ex:
print(ex)
print("\nERROR: fitting energy levels for extracting polarizability\
of the state failed. Please check the range of electric \
fields where you are trying to fit polarizability and ensure\
that there is only one state with continuous energy change\
that has dominant contribution of the initial state.\n\n")
return 0
if debugOutput:
print("Scalar polarizability = ",
popt[1] * 1.e3, " MHz cm^2 / V^2 ")
y_fit = []
for val in xOriginalState:
y_fit.append(polarizabilityFit(val, popt[0], popt[1]))
y_fit = np.array(y_fit)
if showPlot:
self.ax.plot(xOriginalState, y_fit, "r--")
self.ax.legend(("fitted model function", "calculated energy level"),
loc=1, fontsize=10)
self.ax.set_ylim(min(yOriginalState), max(yOriginalState))
plt.show()
self.fitX = xOriginalState
self.fitY = yOriginalState
self.fittedCurveY = y_fit
return popt[1] * 1.e3 # returned value is in MHz cm^2 / V^2
[docs] def getState(self, state, electricField, minN, maxN, maxL,
accountForAmplitude=0.95,
debugOutput=False):
"""
Returns basis states and coefficients that make up for a given electric
field the eigenstate with largest contribution of the original state.
Args:
state (array): target basis state in format :math:`[n,\ell,j,m_j]`
corresponding to the state whose composition we want to track
as we apply the electric field
electricField (float): applied DC electric field in units of V/m.
minN (int): minimal principal quantum number to be taken for calculation
of the Stark mixing
maxN (int): maximal principal quantum nunber to be take for calculation
of the Start mixing
maxL (int): maximal orbital angular momentum of states that should be
taken in calculation of the Stark mixing
accountForAmplitude (float): optinal, relative amplitude of state
that should be reached with the subset of the eigen states
returned. The returned eigen states will be sorted in the
declining relative contribution to the final eigen state, and
once total accounted amplitude of the state reaches 0.95,
further output of additional small contribution of the other
basis states to the final states will be supressed. Default
value of 0.95 will force output until basis state accounts
for 95\% of the state amplitude.
debugOutput (bool): optional, prints additional debug information
if True. Default False.
Returns:
**array of states** in format [[n1, l1, j1, mj1], ...] and
**array of complex coefficients** in format [c1, c2, ...] corresponding
the projections of the eigenstate (thas has largest contribution
of the original state in the given electric field) on the basis
states,
and **energy** of the found state in (eV)
"""
self.defineBasis(state[0], state[1], state[2], state[3],
minN, maxN, maxL)
m = self.mat1 + self.mat2 * electricField
ev, egvector = eigh(m)
# find which state in the electric field has strongest contribution
# of the requested state?
maxOverlap = 0
eigenvectorIndex = 0
for i in range(len(ev)):
if ( abs(egvector[self.indexOfCoupledState, i])**2 > maxOverlap ):
maxOverlap = abs( egvector[self.indexOfCoupledState, i] )**2
eigenvectorIndex = i
energy = ev[eigenvectorIndex] * 1e9 * C_h / C_e
if debugOutput:
print("Max overlap = %.3f" % maxOverlap)
print("Eigen energy (state index %d) = %.2f eV" % (eigenvectorIndex,
energy))
contributions = egvector[:, eigenvectorIndex]
sortedContributions = np.argsort(abs(contributions) )
if debugOutput:
print("Maximum contributions to this state")
for i in range(4):
index = sortedContributions[-i-1]
print(contributions[index])
print(self.basisStates[index])
print("===========\n")
i = 0
coef = []
contributingStates = []
while (accountForAmplitude > 0 and i < len(self.basisStates)):
index = sortedContributions[-i-1]
coef.append(contributions[index])
accountForAmplitude -= abs(coef[-1])**2
contributingStates.append(self.basisStates[index])
i += 1
return contributingStates, coef, energy
# ================= Level plots, decays, cascades etc =======================
[docs]class LevelPlot:
"""
Single atom level plots and decays (a Grotrian diagram, or term diagram)
For an example see `Rydberg energy levels example snippet`_.
.. _`Rydberg energy levels example snippet`:
./Rydberg_atoms_a_primer.html#Rydberg-Atom-Energy-Levels
Args:
atom (:obj:`arc.alkali_atom_functions.AlkaliAtom` or :obj:`arc.divalent_atom_functions.DivalentAtom`): ={
:obj:`arc.alkali_atom_data.Lithium6`,
:obj:`arc.alkali_atom_data.Lithium7`,
:obj:`arc.alkali_atom_data.Sodium`,
:obj:`arc.alkali_atom_data.Potassium39`,
:obj:`arc.alkali_atom_data.Potassium40`,
:obj:`arc.alkali_atom_data.Potassium41`,
:obj:`arc.alkali_atom_data.Rubidium85`,
:obj:`arc.alkali_atom_data.Rubidium87`,
:obj:`arc.alkali_atom_data.Caesium`,
:obj:`arc.divalent_atom_data.Strontium88`,
:obj:`arc.divalent_atom_data.Calcium40`
:obj:`arc.divalent_atom_data.Ytterbium174` }
Alkali atom type whose levels we
want to examine
"""
def __init__(self, atomType):
self.atom = atomType
self.nFrom = 0
self.nTo = 0
self.lFrom = 0
self.lTo = 0
self.sList = []
self.listX = []
self.listY = [] # list of energies
self.levelLabel = []
self.fig = 0
self.ax = 0
self.width = 0.2
self.state1 = [0, 0, 0]
self.state2 = [0, -1, 0]
self.transitionMatrix = []
self.populations = []
self.transitionMatrixWavelength3 = []
# characterization of the graph
self.spectraX = []
self.spectraY = []
self.spectraLine = []
[docs] def makeLevels(self, nFrom, nTo, lFrom, lTo, sList=[0.5]):
"""
Constructs energy level diagram in a given range
Args:
nFrom (int): minimal principal quantum number of the
states we are interested in
nTo (int): maximal principal quantum number of the
states we are interested in
lFrom (int): minimal orbital angular momentum
of the states we are interested in
lTo (int): maximal orbital angular momentum
of the states we are interested in
sList (float): optional, spin angular momentum. Default value
of [0.5] corresponds to Alkali atoms. For Alkaline Earth it
has to be specified. For divalent atoms one can plot either
one spin state by setting for example `sList=[0]``,
or both spin states `sList=[0,1]``
"""
if (issubclass(type(self.atom), DivalentAtom) and abs(sList[0]-0.5)<0.1):
raise ValueError("For divalent atoms requested spin state(s) have "
"to be explicitly specified e.g. sList=[0] or "
"sList=[0,1]")
# save local copy of the space restrictions
self.nFrom = nFrom
self.nTo = nTo
self.lFrom = lFrom
self.lTo = lTo
self.sList = sList
# find all the levels within this space restrictions
xPositionOffset = 0
for s in sList:
n = max(self.nFrom, self.atom.groundStateN)
while n <= nTo:
l = lFrom
if (l==0 and s==1 and n == self.atom.groundStateN):
# for ground state S state, there is only singlet
l += 1
while l <= min(lTo, n - 1):
for j in np.linspace(l - s, l + s, round(2 * s + 1)):
if j > -0.1:
self.listX.append(l - lFrom + xPositionOffset)
self.listY.append(self.atom.getEnergy(n, l, j,
s=s))
self.levelLabel.append([n, l, j, s])
l = l + 1
n += 1
# if user requested principal quantum nuber below theself.listX_l.append(l)
# ground state principal quantum number
# add those L states that are higher in energy then the ground state
for state in self.atom.extraLevels:
if state[1] <= lTo and state[0] >= self.nFrom and \
(len(state)==3 or state[3]==s):
# last line means: either is Alkali, when we don't need to
# check the spin, or it's divalent, when we do need to check
# the spin
self.listX.append(state[1] - lFrom + xPositionOffset)
self.listY.append(self.atom.getEnergy(
state[0], state[1], state[2], s=s))
self.levelLabel.append([state[0], state[1], state[2], s])
xPositionOffset += lTo + 1 - lFrom
def makeTransitionMatrix(self, environmentTemperature=0.0, printDecays=True):
self.transitionMatrix = []
for i in xrange(len(self.levelLabel)):
state1 = self.levelLabel[i]
transitionVector = []
# decay of the stay
decay = 0.0
for state2 in self.levelLabel:
dipoleAllowed = (abs(state1[1] - state2[1]) == 1)and\
(abs(state1[2] - state2[2]) <= 1.01)
if (dipoleAllowed):
# decay to this state
rate = self.atom.getTransitionRate(state2[0], state2[1], state2[2],
state1[0], state1[1], state1[2],
temperature=environmentTemperature)
transitionVector.append(rate)
# decay from this state
rate = self.atom.getTransitionRate(state1[0], state1[1], state1[2],
state2[0], state2[1], state2[2],
temperature=environmentTemperature)
decay = decay - rate
else:
transitionVector.append(0.0)
transitionVector[i] = decay
if printDecays:
print("Decay time of ")
printStateString(state1[0], state1[1], state1[2])
if decay < -1e-20:
print("\t is\t", -1.e9 / decay, " ns")
self.transitionMatrix.append(transitionVector)
np.array(self.transitionMatrix)
self.transitionMatrix = np.transpose(self.transitionMatrix)
def drawSpectra(self):
self.fig, self.ax = plt.subplots(1, 1, figsize=(16, 5))
lineWavelength = []
lineStrength = []
lineName = []
i = 0
while i < len(self.levelLabel):
j = 0
while j < len(self.levelLabel):
if (i != j):
wavelength = self.atom.getTransitionWavelength(
self.levelLabel[i][0],
self.levelLabel[i][1], self.levelLabel[i][2],
self.levelLabel[j][0],
self.levelLabel[j][1], self.levelLabel[j][2])
intensity = self.atom.getTransitionRate(self.levelLabel[i][0],
self.levelLabel[i][1], self.levelLabel[i][2],
self.levelLabel[j][0],
self.levelLabel[j][1], self.levelLabel[j][2])
lineWavelength.append(abs(wavelength) * 1.e9)
lineStrength.append(abs(intensity))
lineName.append(printStateString(self.levelLabel[i][0],
self.levelLabel[i][1],
self.levelLabel[i][2]) +
" -> " +
printStateString(self.levelLabel[j][0],
self.levelLabel[j][1],
self.levelLabel[j][2]))
j = j + 1
i = i + 1
self.spectraX = np.copy(lineWavelength)
self.spectraY = np.copy(lineStrength)
self.spectraLine = np.copy(lineName)
def drawSpectraConvoluted(self, lowerWavelength, higherWavelength, points, gamma):
wavelengths = np.linspace(lowerWavelength, higherWavelength, points)
spectra = np.zeros(points)
i = 0
while i < len(wavelengths):
value = 0
j = 0
while j < len(self.spectraX):
value = value + self.spectraY[j] * gamma /\
((self.spectraX[j] - wavelengths[i])**2 + gamma**2)
j = j + 1
spectra[i] = value
i = i + 1
self.ax.plot(wavelengths, spectra, "g-")
def showSpectra(self, saveInFile="", showTransitionPoints=True):
if showTransitionPoints:
self.ax.plot(self.spectraX, self.spectraY, "ro", picker=5)
self.ax.set_xlabel("Wavelength (nm)")
self.ax.set_ylabel("Intensity (arb.un)")
self.fig.subplots_adjust(right=0.95, left=0.1)
# self.ax.set_xlim(300,600)
self.fig.canvas.mpl_connect('pick_event', self.onpick3)
if (saveInFile != ""):
self.fig.savefig(saveInFile)
plt.show()
[docs] def drawLevels(self, units='eV'):
r"""
Draws a level diagram plot
Arg:
units (:obj:`char`,optional): possible values {'eV','*cm*','GHz'};
[case insensitive] if the value is 'eV' (default), Stark
diagram will be plotted as energy in units eV; if the string
contains 'cm' Stark diagram will be plotted in energy units cm
:math:`{}^{-1}`; if value is 'GHz', Stark diagram will be
plotted as energy :math:`/h` in units of GHz;
"""
self.fig, self.ax = plt.subplots(1, 1, figsize=(9.0, 11.5))
if units.lower() == 'ev':
self.scaleFactor = 1
self.units = 'eV'
elif units.lower() == 'ghz':
self.scaleFactor = C_e/C_h*1e-9
self.units = 'GHz'
elif 'cm' in units.lower():
self.scaleFactor = C_e/(C_h*C_c*100)
self.units = 'cm$^{-1}$'
i = 0
while i < len(self.listX):
self.ax.plot([self.listX[i] - self.width,
self.listX[i] + self.width],
[self.listY[i]*self.scaleFactor, self.listY[i]*self.scaleFactor], "b-", picker=True)
if (i < len(self.populations) and (self.populations[i] > 1e-3)):
self.ax.plot([self.listX[i]], [self.listY[i]*self.scaleFactor],
"ro", alpha=self.populations[i])
i = i + 1
# Y AXIS
self.listX = np.array(self.listX)
self.ax.set_ylabel("Energy (%s)"%self.units)
self.ax.set_xlim(-0.5 + np.min(self.listX), np.max(self.listX) + 0.5)
# X AXIS
majorLocator = MultipleLocator(1)
self.ax.xaxis.set_major_locator(majorLocator)
tickNames = []
for s in self.sList:
sNumber = round(2 * s + 1)
for l in xrange(self.lFrom, self.lTo + 1):
tickNames.append("$^%d %s$" % (sNumber, printStateLetter(l) ) )
tickNum = len(tickNames)
self.fig.canvas.draw()
self.ax.set_xticks(np.arange(tickNum))
self.ax.set_xticklabels(tickNames)
self.ax.set_xlim(-0.5 + np.min(self.listX), np.max(self.listX) + 0.5)
# TITLE
self.ax.set_title('%s: $n \in [%d,%d]$'%(self.atom.elementName, self.nFrom, self.nTo))
[docs] def showPlot(self):
"""
Shows a level diagram plot
"""
self.fig.canvas.mpl_connect('pick_event', self.onpick2)
self.state1[0] = -1 # initialise for picking
plt.show()
def findState(self, x, y):
y /= self.scaleFactor
distance = 100000000.0
state = [0, 0, 0]
i = 0
while i < len(self.listX):
dx = self.listX[i] - x
dy = self.listY[i] - y
dist = sqrt(dx * dx + dy * dy)
if (dist < distance):
distance = dist
state = self.levelLabel[i]
i = i + 1
return state
def findStateNo(self, state):
# returns no of the given state in the basis
i = 0
while i < len(self.levelLabel):
if (self.levelLabel[i][0] == state[0])and\
(self.levelLabel[i][1] == state[1])and\
(abs(self.levelLabel[i][2] - state[2]) < 0.01):
return i
i = i + 1
print("Error: requested state ")
print(state)
print("could not be found!")
return -1
def findLine(self, x, y):
distance = 1.e40
line = ""
i = 0
while i < len(self.spectraLine):
dx = self.spectraX[i] - x
dy = self.spectraY[i] - y
dist = sqrt(dx * dx + dy * dy)
if (dist < distance):
distance = dist
line = self.spectraLine[i]
i = i + 1
return line
def onpick2(self, event):
if isinstance(event.artist, matplotlib.lines.Line2D):
thisline = event.artist
xdata = thisline.get_xdata()
ydata = thisline.get_ydata()
state = self.findState((xdata[0] + xdata[0]) / 2., ydata[0])
if (self.state1[0] == -1 ):
if (state[1] != self.state2[1] or state[0]!= self.state2[0]):
self.state1 = state
self.ax.set_title(r"$%s \rightarrow$ " % (printStateStringLatex(
state[0], state[1], state[2], s=state[3])) )
self.state2 = [-1, -1, -1]
else:
title = ""
if (state[0] != self.state1[0]) or (state[1] != self.state1[1]):
title = (r"$ %s \rightarrow %s $ " %
(printStateStringLatex(self.state1[0],
self.state1[1],
self.state1[2], s=self.state1[3]),
printStateStringLatex(state[0], state[1], state[2],
s=state[3])))
transitionEnergy = self.atom.getTransitionFrequency(self.state1[0],
self.state1[1],
self.state1[2],
state[0],
state[1],
state[2],
s=self.state1[3],
s2=state[3]) * C_h / C_e # in eV
title = title + (" %sm (%s%s)" %
(formatNumberSI(self.atom.getTransitionWavelength(self.state1[0],
self.state1[1],
self.state1[2],
state[0], state[1],
state[2],
s=self.state1[3],
s2=state[3])),
formatNumberSI(transitionEnergy * self.scaleFactor),
self.units))
self.ax.set_title(title)
self.state1 = [-1, 0, 0]
self.state2 = state
event.canvas.draw()
def onpick3(self, event):
if isinstance(event.artist, matplotlib.lines.Line2D):
thisline = event.artist
xdata = thisline.get_xdata()
ydata = thisline.get_ydata()
ind = event.ind
print(ind[0])
line = self.findLine(xdata[ind][0], ydata[ind][0])
self.ax.set_title(line)
event.canvas.draw()
[docs]class AtomSurfaceVdW:
r"""
Calculates atom-surface Van der Waals interaction.
Energy of atom state :math:`|i\rangle` at distance :math:`z`
from the surface of material is offseted in energy by
:math:`V_{\rm VdW}` at small distances
:math:`z\ll\rm{min}(\lambda_{i,j})` ,
where :math:`\lambda_{i,j}` are the wavelengths from atom state
:math:`|i \rangle` to all strongly-coupled states :math:`j` ,
due to (unretarded) atom-surface interaction, also called
Van der Waals interaction.
The interaction potential can be expressed as
:math:`V_{\rm VdW} = - \frac{C_3}{z^3}`
This class calculates :math:`C_3` for individual states
:math:`|i\rangle`.
See example `atom-surface calculation snippet`_.
.. _`atom-surface calculation snippet`:
./ARC_3_0_introduction.html#Atom-surface-van-der-Waals-interactions-(C3-calculation)
Args:
atom (:obj:`AlkaliAtom` or :obj:`DivalentAtom`): specified
Alkali or Alkaline Earth atom whose interaction with surface
we want to explore
material (from :obj:`arc.materials`): specified surface material
Note:
To find frequecy shift of a transition
:math:`|\rm a \rangle\rightarrow |\rm b \rangle`,
one needs to calculate difference in
:math:`C_3` coefficients obtained for the two states
:math:`|\rm a\rangle` and :math:`|\rm b\rangle` respectively.
See example TODO (TO-DO)
"""
def __init__(self, atom, surfaceMaterial=None):
self.atom = atom
if surfaceMaterial is None:
print("NOTE: No surface material specified. "
"Assuming perfect mirror.")
self.surfaceMaterial = surfaceMaterial
[docs] def getC3contribution(self,
n1, l1, j1,
n2, l2, j2,
s=0.5):
r"""
Contribution to :math:`C_3` of :math:`|n_1, \ell_1, j_1\rangle` state
due to dipole coupling to :math:`|n_2, \ell_2, j_2\rangle` state.
Calculates
:math:`\frac{1}{4\pi\varepsilon_0}\
\frac{ n(\omega_{\rm ab})^2 - 1}{ n(\omega_{\rm ab})^2 + 1}\
\frac{
\left| \langle a| D_x | b \rangle \right|^2 \
+ \left| \langle a | D_y | b \rangle \right|^2 + \
2 \cdot \left|\langle a |D_z| b \rangle \right|^2}{16}`
where :math:`|{\rm a}\rangle \equiv |n_1, \ell_1, j_1\rangle` ,
:math:`|{\rm b}\rangle \equiv |n_2, \ell_2, j_2\rangle`,
:math:`\mathbf{D} \equiv e \cdot \mathbf{r} \
\equiv \hat{x} D_x + \hat{y} D_y\
+ \hat{z} D_z` is atomic dipole operator and :math:`n(\omega_{\rm ab})`
is refractive index of the considered surface at transition frequency
:math:`\omega_{\rm ab}` .
Args:
n1 (int): principal quantum number of state 1
l1 (int): orbital angular momentum of state 1
j1 (float): total angular momentum of state 1
n2 (int): principal quantum number od state 2
l2 (int): orbital angular momentum of state 2
j2 (float): total angular momentum of state 2
s (float): optional, spin angular momentum of states. Default value
of 0.5 is correct for AlkaliAtoms. For DivalentAtom it
has to be explicitly stated
Returns:
float, float, float:
contribution to VdW coefficient :math:`C_3` ,\
estimated error :math:`\delta C_3` \
(in units of :math:`{\rm J}\cdot{\rm m}^3`), and refractive \
index :math:`n` of the surface material for the given \
transition.
Warning:
This is just contribution of one transition to the level shift
of a particular state. To calculate total level shift, check
:obj:`AtomSurfaceVdW.getStateC3`
"""
result = 0.
error = 0.
hasLiteratureValue, dme, info = self.atom.getLiteratureDME(
n1, l1, j1,
n2, l2, j2,
s=0.5)
if hasLiteratureValue:
dme_reduced_J = self.atom.getReducedMatrixElementJ(
n1, l1, j1,
n2, l2, j2,
s=0.5)
relativeError = abs(info[1]/dme_reduced_J)
else:
relativeError = 0.05 # 5 percent for calculated values (note: estimate only!)
# sum over mj1
for mj1 in np.linspace(-j1, j1, int(round(2 * j1 + 1))):
# calculate sum_mj2 |<j1,mj1|Dx|j2,mj2>|^2 + |<j1,mj1|Dy|j2,mj2>|^2 + 2* |<j1,mj1|Dz|j2,mj2>|^2
# which is equal to (check!) |<j1,mj1|D+|j2,mj2>|^2 + |<j1,mj1|D-|j2,mj2>|^2 + 2* |<j1,mj1|Dz|j2,mj2>|^2
for mj2 in np.linspace(-j2, j2, int(round(2 * j2 + 1, 0))):
for q in [-1, +1]:
result += abs(
self.atom.getDipoleMatrixElement(n1, l1, j1, mj1,
n2, l2, j2, mj2,
q, s=s)
* C_e * physical_constants["Bohr radius"][0]
)**2
error += (
2 * abs(self.atom.getDipoleMatrixElement(n1, l1, j1, mj1,
n2, l2, j2, mj2,
q, s=s)
* C_e * physical_constants["Bohr radius"][0]
)**2
* relativeError
)
# for q = 0
q = 0
result += 2 * abs(
self.atom.getDipoleMatrixElement(n1, l1, j1, mj1,
n2, l2, j2, mj2,
q)
* C_e * physical_constants["Bohr radius"][0]
)**2
error += (
2 * abs(self.atom.getDipoleMatrixElement(n1, l1, j1, mj1,
n2, l2, j2, mj2,
q)
* C_e * physical_constants["Bohr radius"][0]
)**2
* relativeError)
materialFactor = 1.
n = 10000
# effectively infinite refractive index would correspond to perfect
# reflector (perfect mirror)
if self.surfaceMaterial is not None:
wavelength = np.abs(self.atom.getTransitionWavelength(n1, l1, j1,
n2, l2, j2,
s=s, s2=s)
) * 1e6 # in mum
n = self.surfaceMaterial.getN(vacuumWavelength=wavelength)
materialFactor = (n**2 - 1.) / (n**2 + 1.)
# include factor of 16
result = result / (2 * j1 + 1) / 16
error = error / (2 * j1 + 1) / 16
C3 = materialFactor * 1 / (4.0 * pi * epsilon_0) * result
error = materialFactor * 1 / (4.0 * pi * epsilon_0) * error
return C3, error, n # C3 and error in units of J m^3
[docs] def getStateC3(self, n, l, j, coupledStatesList, s=0.5, debugOutput=False):
r"""
Van der Waals atom-surface interaction coefficient for
a given state (:math:`C_3` in units of
:math:`\mathrm{J}\cdot\mathrm{m}^3` )
Args:
n (int): principal quantum number of the state
l (int): orbital angular momentum of the state
j (int): total angular momentum of state
coupledStatesList (array): array of states that are strongly
dipole-coupled to the initial state, whose contribution
to :math:`C_3` will be take into account. Format
`[[n1,l1,j1],...]`
s (float, optional): total spin angular momentum for the considered
state. Default value of 0.5 is correct for `AlkaliAtoms`, but
it has to be explicitly specifiied for `DivalentAtom`.
debugOutput (bool, optional): prints additional output information,
False by default.
Returns:
float, float:
:math:`C_3` (in units of :math:`{\rm J}\cdot {\rm m}^3` ),
estimated error :math:`\delta C_3`
"""
if debugOutput:
print("%s ->\tC3 contr. (kHz mum^3) \tlambda (mum)\tn"
% (printStateString(n, l, j, s=s))
)
totalShift = 0
sumSqError = 0
for state in coupledStatesList:
c3, err, refIndex = self.getC3contribution(
n, l, j,
state[0], state[1], state[2],
s=s)
if debugOutput:
print(
"-> %s\t%.3f +- %.3f \t%.3f\t\t%.3f\n" %
(printStateString(state[0], state[1], state[2], s=s),
c3/C_h*(1e6)**3*1e-3,
err/C_h*(1e6)**3*1e-3,
self.atom.getTransitionWavelength(
n, l, j,
state[0], state[1], state[2], s=s, s2=s) * 1e6,
refIndex)
)
totalShift += c3
sumSqError += err**2
error = np.sqrt(sumSqError)
if debugOutput:
print("= = = = = = \tTotal shift of %s\t= %.3f+-%.4f kHz mum^3\n" %
(printStateString(n, l, j, s=s),
totalShift/C_h * (1e6)**3 * 1e-3,
error/C_h * (1e6)**3 * 1e-3))
return totalShift, error # in J m^3
[docs]class OpticalLattice1D:
r"""
Atom properties in optical lattices in 1D.
See example `optical lattice calculations snippet`_.
.. _`optical lattice calculations snippet`:
./ARC_3_0_introduction.html#Optical-lattice-calculations-(Bloch-bands,-Wannier-states...)
Args:
atom: one of AlkaliAtom or DivalentAtom
trapWavenegth (float): wavelength of trapping laser light
(in units of m)
"""
energy = []
"""
energy of states obtained by
:obj:`OpticalLattice1D.diagonalise` method
in format `[[energies for quasimomentum1 ], [energies for quasimomentum2 ], ...]`
"""
quasimomentum = []
"""
list of quzimomentum for which the energies of states was calculated
by :obj:`OpticalLattice1D.diagonalise` method
in format `[quasimomentum1, quasimomentum2, ...]`
"""
savedBlochBand = []
"""
list of saved eigen energy state compositions for each of the Calculated
quasimomentums for the selected index of the Bloch band
in :obj:`OpticalLattice1D.diagonalise` method
in format `[[eigen state decomposition for quasimomentum 1],
[eigen state decomposition for quasimomentum 2], ...]`
"""
trapPotentialDepth = 0
"""
save slattice trap potential depth for which calculation
:obj:`OpticalLattice1D.diagonalise` was done
"""
def __init__(self, atom, trapWavenegth):
self.atom = atom
self.trapWavenegth = trapWavenegth
[docs] def getRecoilEnergy(self):
"""
Recoil energy for atoms in given optical lattice
Returns:
float: recoil energy in units of J
"""
latticeConstant = self.trapWavenegth / 2
Er = C_h**2 / (8 * self.atom.mass * latticeConstant**2)
return Er
[docs] def getTrappingFrequency(self, trapPotentialDepth):
"""
Atom's trapping frequecy for given trapth depth
Args:
trapPotentialDepth (float): lattice depth (in units of J)
Returns:
float: trapping frequency (in Hz)
"""
Er = self.getRecoilEnergy()
return 2. * Er / hbar * np.sqrt(trapPotentialDepth / Er)
def _BlochFunction(self, x, stateVector, q, k=1.):
r"""
Bloch wavefunctions
Args:
x (x): position (in units \2 pi/k, for default value of laser
wavevector unit k=1, one full wavelength is 2\pi)
stateVector: eigen vector obtained by diagonalisation of
interaction Hamiltonian in a subspace given by the selected
quasimomentum
q (float): quasimomentum (in units of driving laser k)
k (float): driving laser wavevector, define units for momentum and
distance;
if k==1 (default value), reciprocal lattice momentum is 2,
and the full range of quasimomentum is from -1 to +1;
one full wavelength is the 2\pi.
Retruns:
float:
"""
index = len(stateVector) // 2 + 2 # Align Bloch functions in phase
angle = np.angle(stateVector[index])
sign = np.exp(-1j*angle)
temp = 0 + 0j
for l in np.arange(-self.lLimit, self.lLimit + 1, 1):
temp += sign * stateVector[l + self.lLimit] \
* np.exp(1.j * (2. * k * l + q) * x)
return temp
[docs] def BlochWavefunction(self,
trapPotentialDepth,
quasimomentum,
blochBandIndex):
r"""
Bloch wavefunction as a **function** of 1D coordinate.
Paraeters:
trapPotentialDepth (float):
(in units of recoil energy
:obj:`OpticalLattice1D.getRecoilEnergy`)
quasimomentum (float):
(in units of 2 \pi /
:obj:`OpticalLattice1D.trapWavenegth`; note that
reciprocal lattice momentum in this units is 2, and that
full range of quasimomentum is from -1 to +1)
Returns:
Bloch wavefunction as a **function** of coordinate (see call
example below)
Example:
Returns Bloch wavefunction. Use as following::
trapPotentialDepth = 40 # units of recoil energy
quasimomentum = 0
blochBandIndex = 0 # Bloch band lowest in energy is 0
wf = lattice.BlochWavefunction(trapPotentialDepth,
quasimomentum,
blochBandIndex)
wf(x) # returns complex number corresponding to value of Bloch
# wavefunction at point x (cooridnate given in units of
# 1/k where k = 2 \pi / trapWavenegth )
# by default k=1, so one full wavelength is 2\pi
"""
temp1 = self.energy
temp2 = self.quasimomentum
temp3 = self.savedBlochBand
self.diagonalise(trapPotentialDepth, [quasimomentum],
saveBandIndex = blochBandIndex)
state = np.copy(self.savedBlochBand[0])
self.energy = temp1
self.quasimomenutm = temp2
self.savedBlochBand = temp3
return lambda x: self._BlochFunction(x, state, quasimomentum)
[docs] def defineBasis(self, lLimit=35):
"""
Define basis for Bloch band calculations
Bloch states are calculated suming up all relevant states
with momenta in range
`[-lLimit * 4 * pi /trapWavenegth, +lLimit * 4 * pi /trapWavenegth]`
Note that factor of 4 occurs since potential lattice period is
twice the `trapWavelength` for standing wave.
Args:
lLimit (integer): Optional, defines maximal momentum to be taken
for calculation of Bloch States
as `lLimit * 4 * pi / trapWavenegth` . By default set to 35.
"""
self.lLimit = lLimit
def _getLatticeHamiltonian(self, q, Vlat):
"""
Lattice Hamiltonian
Args:
q (float):
Vlat (float):
lLimit (int):
"""
# assemble Hamiltonian
hConstructor = [[], [], []] # [[values],[columnIndex],[rowIndex]]
for l in np.arange(- self.lLimit, self.lLimit + 1, 1):
# basis index exp(2*l*k*x) state has index lLimit+l
column = self.lLimit + l
if (l - 1 >= - self.lLimit):
hConstructor[0].append(- Vlat / 4.)
hConstructor[1].append(column)
hConstructor[2].append(column - 1)
if (l + 1 <= self.lLimit):
hConstructor[0].append(- Vlat / 4.)
hConstructor[1].append(column)
hConstructor[2].append(column + 1)
# diagonal term
# with global energy offset (- Vlat / 2.) factored out
hConstructor[0].append((2. * l + q)**2 + Vlat / 2.)
hConstructor[1].append(column)
hConstructor[2].append(column)
dimension = 2 * self.lLimit + 1
hamiltonianQ = csr_matrix((hConstructor[0],
(hConstructor[1], hConstructor[2])),
shape=(dimension, dimension))
return hamiltonianQ
[docs] def diagonalise(self, trapPotentialDepth, quasimomentumList,
saveBandIndex=None):
r"""
Calculates energy levels (Bloch bands) for given `quasimomentumList`
Energy levels and their quasimomentum are saved in internal variables
`energy` and `quasimomentum`. Energies are saved in units of
recoil energy, and quasimomentum in units of
The optional parameter `saveBandIndex` specifies index of the Bloch
band for which eigenvectrors should be saved. If provided,
eigenvectors for each value `quasimomentumList[i]` are saved in
`savedBlochBand[i]`.
Args:
latticePotential (float): lattice depth formed
by the standing wave of laser, with wavelength specified
during initialisation of the lattice
(in units of recoil energy).
quasimomentumList (array): array of quasimomentum values for
which energy levels will be calculated (in units of
:math:`\hbar \cdot k`,
where :math:`k` is trapping laser wavevector;
since reciprocal lattice has twice the trapping laser
wavevector due to standing wave, full range of
quasimomentum is from -1 to +1)
saveBandIndex (int): optional, default None. If provided,
specifies for which Bloch band should the eignevectors be
also saved. `saveBlochBand=0` corresponds to lowest energy
band.
"""
self.energy = []
self.quasimomentum = quasimomentumList
self.savedBlochBand = []
self.trapPotentialDepth = trapPotentialDepth
for q in quasimomentumList:
hamiltonianQ = self._getLatticeHamiltonian(q, trapPotentialDepth)
ev, egvector = np.linalg.eig(hamiltonianQ.todense())
egvector = np.transpose(np.array(egvector))
orderInEnergy = np.argsort(ev)
ev = ev[orderInEnergy]
egvector = egvector[orderInEnergy]
self.energy.append(ev)
if saveBandIndex is not None:
self.savedBlochBand.append(egvector[saveBandIndex])
[docs] def plotLevelDiagram(self):
"""
Plots energy level diagram (Bloch bands).
Based on diagonalisation of the lattice potential, plots descrete
eigen energy spectra obtained for each value of the quasimomentum
used in :obj:`OpticalLattice1D.diagonalise` method.
Returns:
matploltib figure with a Bloch bands
"""
f = plt.figure(figsize=(6, 10))
ax = f.add_subplot(1, 1, 1)
for i, energyLevels in enumerate(self.energy):
ax.plot([self.quasimomentum[i]] * len(energyLevels),
energyLevels, ".", color="0.8")
ax.set_xlabel(r"Quasimomentum, $q$ $(\hbar k)$")
ax.set_ylabel(r"State energy, E ($E_{\rm r}$)")
ax.set_ylim(-0.2, 50)
ax.set_xlim(-1, 1)
return f
[docs] def getWannierFunction(self, x, latticeIndex=0, k=1):
r"""
Gives value at cooridnate x of a Wannier function localized
at given lattice index.
Args:
x (float): spatial coordinate (in units of :math:`2\pi/k` ; for
default value of laser drivng wavevecto :math:`k=1` , one
trappinWavelength is :math:`2\pi` ). Coordinate origin is
at `latticeIndex=0` .
latticeIndex (int): optional, lattice index at which the
Wannier function is localised. By defualt 0.
k (float): optional; laser driving wavevector, defines unit
of length. Default value is 1, making one trapping laser
wavelenth equal to :math:`2\pi`
"""
value = 0
localizedAt = 2. * pi / k * latticeIndex / 2.
# last division by 2 is because lattice period is
# 2 x smaleler then wavelenth of the driving laser
for i in range(len(self.quasimomentum)):
q = self.quasimomentum[i]
value += np.exp(-1j * q * localizedAt) \
* self._BlochFunction(x,
self.savedBlochBand[i],
q, k=k)
return value
[docs]class DynamicPolarizability:
"""
Calculations of magic wavelengths and dynamic polarizability
(scalar and tensor).
Args:
atom: alkali or alkaline element of choice
n (int): principal quantum number of the selected stated
l (int): orbital angular momentum of the selected state
j (float): total angular momentum of selected state
s (float): optional, spin state of the atom. Default value of
0.5 is correct for Alkali atoms, but it has to be explicitly
specified for DivalentAtom.
"""
def __init__(self, atom, n, l, j, s=0.5):
self.atom = atom
self.n = n
self.l = l
self.j = j
self.s = s
[docs] def defineBasis(self, nMin, nMax):
"""
Defines basis for calculation of dynamic polarizability
Args:
nMin (int): minimal principal quantum number of states to be
taken into account for calculation
nMax (int): maxi,al principal quantum number of states to be
taken into account for calculation
"""
self.nMin = nMin
self.nMax = nMax
self.basis = []
self.lifetimes = []
for n1 in np.arange(max(self.nMin, self.atom.groundStateN),
self.nMax + 1):
lmin = self.l - 1
if (lmin < - 0.1):
lmin = self.l + 1
for l1 in range(lmin, min(self.l + 2, n1)):
j1 = l1 - self.s
if j1 < 0.1:
j1 += 1
while j1 <= l1 + self.s + 0.1:
if self.__isDipoleCoupled(
self.n, self.l, self.j,
n1, l1, j1
):
# print([n1, l1, j1, self.s])
self.basis.append([n1, l1, j1, self.s])
j1 += 1
for state in self.atom.extraLevels:
if ((len(state) == 3 or abs(state[3] - self.s) < 0.1)
and
self.__isDipoleCoupled(
self.n, self.l, self.j,
state[0], state[1], state[2])
):
self.basis.append(state)
def __isDipoleCoupled(self,
n1, l1, j1,
n2, l2, j2,
s=0.5):
if ( not (abs(l1 - l2) != 1
and( (abs(j1 - 0.5) < 0.1
and abs(j2 - 0.5) < 0.1) # j = 1/2 and j'=1/2 forbidden
or
(abs(j1) < 0.1
and abs(j2 - 1) < 0.1) # j = 0 and j'=1 forbidden
or
(abs(j1-1) < 0.1
and abs(j2) < 0.1) # j = 1 and j'=0 forbidden
)
)
and not(abs(j1)<0.1 and abs(j2)<0.1) # j = 0 and j'=0 forbiden
and not (abs(l1)<0.1 and abs(l2)<0.1) # l = 0 and l' = 0 is forbiden
):
dl = abs(l1 - l2)
dj = abs(j1 - j2)
if dl == 1 and (dj < 1.1):
return True
else:
return False
return False
[docs] def getPolarizability(self, driveWavelength,
units="SI",
accountForStateLifetime=False,
mj=None
):
r"""
Calculates of scalar, vector, tensor, core and pondermotive
polarizability, and returns state corresponding to the closest
transition resonance.
Note that pondermotive polarisability is calculated as
:math:`\alpha_P = e^2 / (2 m_e \omega^2)`, i.e. assumes that the
definition of the energy shift in field :math:`E` is
:math:`\frac{1}{2}\alpha_P E^2`. For more datils check the
preprint `arXiv:2007.12016`_ that introduced the update.
.. _`arXiv:2007.12016`:
https://arxiv.org/abs/2007.12016
Args:
driveWavelength (float): wavelength of driving field
(in units of m)
units (string): optional, 'SI' or 'a.u.' (equivalently 'au'),
switches between SI units for returned result
(:math:`Hz V^{-2} m^2` )
and atomic units (":math:`a_0^3` "). Defaul 'SI'
accountForStateLifetime (bool): optional, should we account
for finite transition linewidths caused by finite state
lifetimes. By default False.
Returns:
scalar, vector, and tensor, polarizabilities of the state
specified, as well as the core, and ponderomotive
polarizabilities of the atom, followed by the atomic state
whose resonance is closest in energy. Returned units depend
on `units` parameter (default SI).
"""
if (accountForStateLifetime and len(self.lifetimes) == 0):
for state in self.basis:
self.lifetimes.append(self.atom.getStateLifetime(state[0],
state[1],
state[2],
s=self.s))
driveEnergy = C_c / driveWavelength * C_h
initialLevelEnergy = self.atom.getEnergy(self.n, self.l, self.j,
s=self.s) * C_e
# prefactor for vector polarisability
prefactor1 = 1. / ((self.j + 1) * (2 * self.j + 1))
# prefactor for tensor polarisability
prefactor2 = (6 * self.j * (2 * self.j - 1)
/ (6 * (self.j + 1)
* (2 * self.j + 1)
* (2 * self.j + 3))
)**0.5
alpha0 = 0.
alpha1 = 0.
alpha2 = 0.
closestState = []
closestEnergy = -1
targetStateLifetime = self.atom.getStateLifetime(self.n, self.l,
self.j, s=self.s)
for i, state in enumerate(self.basis):
n1 = state[0]
l1 = state[1]
j1 = state[2]
if ((mj is None) or (abs(mj) < j1 + 0.1)):
if abs(j1 - self.j) < 1.1 and (abs(l1 - self.l) > 0.5
and abs(l1 - self.l) < 1.1):
coupledLevelEnergy = self.atom.getEnergy(n1, l1, j1,
s=self.s) * C_e
diffEnergy = abs((coupledLevelEnergy
- initialLevelEnergy)**2 - driveEnergy**2)
if ((diffEnergy < closestEnergy) or (closestEnergy < 0)
):
closestEnergy = diffEnergy
closestState = state
if diffEnergy < 1e-65:
# print("For given frequency we are in exact resonance with state %s" % printStateString(n1,l1,j1,s=s))
return None, None, None, None, None, state
# common factors
if accountForStateLifetime:
transitionLinewidth = (1 / self.lifetimes[i]
+ 1 / targetStateLifetime) * C_h
else:
transitionLinewidth = 0.
# transitionEnergy
transitionEnergy = (coupledLevelEnergy
- initialLevelEnergy)
d = self.atom.getReducedMatrixElementJ(self.n, self.l, self.j,
n1, l1, j1,
s=self.s)**2 \
* (C_e * physical_constants["Bohr radius"][0])**2\
* transitionEnergy \
* (transitionEnergy**2 - driveEnergy**2
+ transitionLinewidth**2 / 4) \
/ ((transitionEnergy**2 - driveEnergy**2
+ transitionLinewidth**2 / 4)**2
+ transitionLinewidth**2 * driveEnergy**2)
alpha0 += d
# vector polarsizavility
alpha1 += (-1) * (self.j * (self.j+1) + 2 - j1 * (j1 + 1)) \
* self.atom.getReducedMatrixElementJ(self.n,
self.l,
self.j,
n1, l1, j1,
s=self.s)**2\
* (C_e * physical_constants["Bohr radius"][0])**2\
* driveEnergy \
* (transitionEnergy**2 - driveEnergy**2
- transitionLinewidth**2 / 4) \
/ ((transitionEnergy**2 - driveEnergy**2
+ transitionLinewidth**2 / 4)**2
+ transitionLinewidth**2 * driveEnergy**2)
# tensor polarizability vanishes for j=1/2 and j=0 states
# because Wigner6j is then zero
if self.j > 0.6:
alpha2 += \
(- 1)**(self.j + j1 + 1) \
* self.atom.getReducedMatrixElementJ(self.n,
self.l,
self.j,
n1, l1, j1,
s=self.s)**2 \
* (C_e * physical_constants["Bohr radius"][0])**2\
* Wigner6j(self.j, 1, j1, 1, self.j, 2) \
* (coupledLevelEnergy - initialLevelEnergy) \
/ ((coupledLevelEnergy - initialLevelEnergy)**2
- driveEnergy**2)
alpha0 = 2. * alpha0/(3. * (2. * self.j + 1.))
alpha0 = alpha0 / C_h # Hz m^2 / V^2
alpha1 = prefactor1 * alpha1 / C_h
alpha2 = - 4 * prefactor2 * alpha2 / C_h
# core polarizability -> assumes static polarisability
alphaC = self.atom.alphaC * 2.48832e-8 # convert to Hz m^2 / V^2
# podermotive shift
driveOmega = 2 * np.pi / driveWavelength * C_c
alphaP = C_e**2 / (2 * C_m_e * driveOmega**2 * C_h)
if (units == "SI"):
return alpha0, alpha1, alpha2, alphaC, alphaP, closestState # in Hz m^2 / V^2
elif (units == "a.u." or units == "au"):
return alpha0 / 2.48832e-8, alpha1 / 2.48832e-8, alpha2 / 2.48832e-8, \
alphaC / 2.48832e-8, alphaP / 2.48832e-8, closestState
else:
raise ValueError("Only 'SI' and 'a.u' (atomic units) are recognised"
" as 'units' parameter. Entered value '%s' is"
" not recognised." % units)
[docs] def plotPolarizability(self, wavelengthList,
mj=None,
addToPlotAxis=None,
line="b-",
units="SI",
addCorePolarisability=True,
addPondermotivePolarisability=False,
accountForStateLifetime=False,
debugOutput=False):
r"""
Plots of polarisability for a range of wavelengths.
Can be combined for different states to allow finding magic wavelengths
for pairs of states. Currently supports only driving with
linearly polarised light. See example
`magic wavelength snippet`_.
.. _`magic wavelength snippet`:
./ARC_3_0_introduction.html#Calculations-of-dynamic-polarisability-and-magic-wavelengths-for-optical-traps
Parameters:
wavelengthList (array): wavelengths for which we want to calculate
polarisability (in units of m).
mj (float): optional, `mj` projection of the total angular
momenutum for the states for which we are calculating
polarisability. By default it's `+j`.
line (string): optional, line style short definition to be passed
to matplotlib when plotting calculated polarisabilities
units (string): optional, 'SI' or 'a.u.' (equivalently 'au'),
switches between SI units for returned result
(:math:`Hz V^-2 m^2` )
and atomic units (":math:`a_0^3` "). Deafault 'SI'.
addCorePolarisability (bool): optional, should ionic core
polarisability be taken into account. By default True.
addPondermotivePolarisability (bool): optional, should pondermotive
polarisability (also called free-electron polarisability)
be added to the total polarisability. Default is
False. It assumes that there is no significant variation of
trapping field intensity over the range of the electric cloud.
If this condition is not satisfied, one has to calculate
total shift as average over the electron wavefunction.
accountForStateLifetime (bool): optional, should we account
for finite transition linewidths caused by finite state
lifetimes. By default False.
debugOutput (bool): optonal. Print additional output on resonances
Default value False.
"""
pFinal = []
wFinal = []
p = []
w = []
resonances = []
if (mj is None):
mj = self.j
if (self.j > 0.5 + 0.1):
tensorPrefactor = (3 * mj**2 - self.j * (self.j + 1)) / \
(self.j * (2 * self.j - 1))
else:
tensorPrefactor = 0
for wavelength in wavelengthList:
scalarP, vectorP, tensorP, coreP, pondermotiveP, state = self.getPolarizability(
wavelength,
accountForStateLifetime=accountForStateLifetime,
units=units,
mj=mj)
if (scalarP is not None):
# we are not hitting directly the resonance
totalP = scalarP + tensorPrefactor * tensorP
if addCorePolarisability:
totalP += coreP
if addPondermotivePolarisability:
# Subtract pondermotive contribution since the sign convention
# is opposite to that of the dynamical polarizability.
totalP -= pondermotiveP
if ((len(p) > 0) and p[-1] * totalP < 0
and (len(p) > 2 and (p[-2] - p[-1]) * totalP > 0)
):
pFinal.append(p)
wFinal.append(w)
p = []
w = []
resonances.append(wavelength)
if debugOutput:
print(r"Resonance: %.2f nm %s"
% (wavelength * 1e9,
printStateString(state[0],
state[1],
state[2],
s=self.s))
)
p.append(totalP)
w.append(wavelength)
pFinal.append(p)
wFinal.append(w)
if addToPlotAxis is None:
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
else:
ax = addToPlotAxis
for i in range(len(wFinal)):
ax.plot(np.array(wFinal[i]) * 1e9, pFinal[i], line,
zorder=1)
ax.set_xlabel(r"Driving field wavelength (nm)")
if units == "SI":
ax.set_ylabel(r"Polarizability (Hz/V$^2$ m$^2$)")
else:
ax.set_ylabel(r"Polarizability (a.u.)")
for resonance in resonances:
ax.axvline(x=resonance * 1e9, linestyle=":", color="0.5",
zorder=0)
return ax