class AtomSurfaceVdW(atom, surfaceMaterial=None)[source]#

Calculates atom-surface Van der Waals interaction.

Energy of atom state \(|i\rangle\) at distance \(z\) from the surface of material is offseted in energy by \(V_{\rm VdW}\) at small distances \(z\ll\rm{min}(\lambda_{i,j})\) , where \(\lambda_{i,j}\) are the wavelengths from atom state \(|i \rangle\) to all strongly-coupled states \(j\) , due to (unretarded) atom-surface interaction, also called Van der Waals interaction. The interaction potential can be expressed as

\(V_{\rm VdW} = - \frac{C_3}{z^3}\)

This class calculates \(C_3\) for individual states \(|i\rangle\).

See example atom-surface calculation snippet.

  • atom (AlkaliAtom or DivalentAtom) – specified Alkali or Alkaline Earth atom whose interaction with surface we want to explore

  • material (from arc.materials) – specified surface material


To find frequecy shift of a transition \(|\rm a \rangle\rightarrow |\rm b \rangle\), one needs to calculate difference in \(C_3\) coefficients obtained for the two states \(|\rm a\rangle\) and \(|\rm b\rangle\) respectively. See example TODO (TO-DO)


getC3contribution(n1, l1, j1, n2, l2, j2[, s])

Contribution to \(C_3\) of \(|n_1, \ell_1, j_1\rangle\) state due to dipole coupling to \(|n_2, \ell_2, j_2\rangle\) state.

getStateC3(n, l, j, coupledStatesList[, s, ...])

Van der Waals atom-surface interaction coefficient for a given state (\(C_3\) in units of \(\mathrm{J}\cdot\mathrm{m}^3\) )