Divalent atom data

Note

This is module to be released in the forthcoming ARC 3.0.0 version. To used it now as a beta feature do:

from arc.beta import *

Publication describing this upgrade is in preparation (check this place soon). For now cite as “E. J. Robertson, N. Šibalić, R. M. Potvliege and M. P. A. Jones, in preparation (2020)”.

Strontium88([preferQuantumDefects, cpp_numerov]) Properties of Strontium 88 atoms
Calcium40([preferQuantumDefects, cpp_numerov]) Properties of Calcium 40 atoms
Ytterbium174([preferQuantumDefects, cpp_numerov]) Properties of Ytterbium 174 atoms

Data sources

[1](1, 2) J. A. Armstrong, J. J. Wynne and P. Esherick, “Bound, odd-parity J = 1 spectra of the alkaline earths: Ca, Sr, and Ba”, J. Opt. Soc. Am. 69, 211-230 (1979)
[2]R.Beigang, K.Lücke, A.Timmermann, P.J.West and D.Frölich, Determination of absolute level energies of 5sns1S0 and 5snd1D2 Rydberg series of Sr, Opt. Commun. 42, 19 (1982).
[3](1, 2) J. E. Sansonetti and G Nave, Wavelengths, Transition Probabilities, and Energy Levels for the Spectrum of Neutral Strontium (Sr I), Journal of Physical and Chemical Reference Data 39, 033103 (2010).
[4]Baig M, Yaseen M, Nadeem A, Ali R. and Bhatti S. Three-photon excitation of strontium Rydberg levels, Optics Communications 156, 279 (1998)
[5](1, 2) P. Esherick, J. J. Wynne and J A Armstrong, Spectroscopy of 3P0 states of alkaline earths, Optics Letters 1, 19 (1977).
[6]P Esherick, Bound, even-parity J = 0 and J = 2 spectra of Sr, Physical Review A 15, 1920 (1977).
[7]R. Beigang and D. Schmidt, Two-Channel MQDT Analysis of Bound 5snd 3D1,3 Rydberg States of Strontium, Physica Scripta 27, 172 (1983).
[8]J R. Rubbmark and S. A. Borgstr¨om, Rydberg Series in Strontium Found in Absorption by Selectively, Laser-Excited Atoms. Physica Scripta 18, 196 (1978)
[9]Beigang R, Lucke K, Schmidt D, Timmermann A. and West P. J, One-Photon Laser Spectroscopy of Rydberg Series from Metastable Levels in Calcium and Strontium, Phys. Scr. 26, 183 (1982)
[10]L. Couturier, I. Nosske, F. Hu, C. Tan, C. Qiao, Y. H. Jiang, P. Chen and M. Weidemüller. Measurement of the strontium triplet Rydberg series by depletion spectroscopy of ultracold atoms http://arxiv.org/abs/1810.07611
[11]H. Maeda, Y. Matsuo, M. Takami and A. Suzuki, Optical-microwave double-resonance spectroscopy of highly excited Rydberg states of ytterbium, Physical Review A 45, 1732 (1992)
[12]M, Aymar, R. J. Champeau, C. Delsart and O. Robaux, Three-step laser spectroscopy and multichannel quantum defect analysis of odd-parity Rydberg states of neutral ytterbium, Journal of Physics B: Atomic and Molecular Physics 17, 3645 (1984)
[13]H. Lehec, A. Zuliani, W. Maineult, E. Luc-Koenig, P. Pillet, P. Cheinet, F. Niyaz and T. F. Gallagher, Laser and microwave spectroscopy of even-parity Rydberg states of neutral ytterbium and multichannel-quantum-defect-theory analysis, Physical Review A 98, 062506 (2018)
[14]Thomas R. Gentile, Barbara J. Hughey, Daniel Kleppner and Theodore W. Ducas, Microwave spectroscopy of calcium Rydberg states, Physical Review A 42, 440 (1990)
[15]Masabumi Miyabe, Christopher Geppert, Masaaki Kato, Masaki Oba, Ikuo Wakaida, Kazuo Watanabe and Klaus D. A. Wendt, Determination of Ionization Potential of Calcium by High-Resolution Resonance Ionization Spectroscopy, Journal of the Physical Society of Japan 75, 034302 (2006) 10.1143/JPSJ.75.034302
[16]Meija, Juris et al, “Atomic weights of the elements 2013 (IUPAC Technical Report)”, Pure and Applied Chemistry 88,265 (2016) doi:10.1515/pac-2015-0305.
[17](1, 2, 3) C.B.Alcock, V.P.Itkin, M.K.Horrigan, Canadian Metallurgical Quarterly, 23, 309 (1984) http://dx.doi.org/10.1179/cmq.1984.23.3.309
[18](1, 2, 3) NIST Standard reference database, https://dx.doi.org/10.18434/T4FW23
class arc.divalent_atom_data.Calcium40(preferQuantumDefects=True, cpp_numerov=True)[source]

Bases: arc.divalent_atom_functions.DivalentAtom

Properties of Calcium 40 atoms

defectFittingRange = {'1D2': [36, 66], '1F3': [10, 25], '1P1': [14, 28], '1S0': [14, 34], '3D1': [20, 32], '3D2': [22, 37], '3D3': [20, 45], '3F2': [10, 24], '3F3': [10, 24], '3F4': [10, 24], '3P0': [8, 15], '3P1': [8, 22], '3P2': [8, 18], '3S1': [13, 45]}

Quantum defect principal quantum number fitting ranges for different series

extraLevels = []

TODO unkown if such exist at time of writing

getPressure(temperature)[source]

Pressure of atomic vapour at given temperature.

Calculates pressure based on Ref. [17] (accuracy +- 5%).

ionisationEnergy = 6.113155417663086

eV ref. [15]

levelDataFromNIST = 'ca_level_data.csv'

Sources Refs. [1], [5], [9], [14]

mass = 6.635944355805756e-26

Ref. [18]

meltingPoint = 1115.15

in K

quantumDefect = [[[2.33793, -3.96, 0.0, 0.0, 0.0, 0.0], [1.885584, -0.114, -23.8, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.089, -2, 30, 0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.8833, -0.02, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.964709, 0.228, 0.0, 0.0, 0.0, 0.0], [0.8859, 0.13, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[2.440956, 0.35, 0.0, 0.0, 0.0, 0.0], [1.9549, 2.5, -160.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]]

Contains list of modified Rydberg-Ritz coefficients for calculating quantum defects for [[ \(^1S_{0},^1P_{1},^1D_{2},^1F_{3}\)], [ \(^3S_{0},^3P_{0},^3D_{1},^3F_{2}\)], [ \(^3S_{0},^3P_{1},^3D_{2},^3F_{3}\)], [ \(^3S_{1},^3P_{2},^3D_{3},^3F_{4}\)]].

scaledRydbergConstant = 13.605506438624705

TODO source

class arc.divalent_atom_data.Strontium88(preferQuantumDefects=True, cpp_numerov=True)[source]

Bases: arc.divalent_atom_functions.DivalentAtom

Properties of Strontium 88 atoms

defectFittingRange = {'1D2': [36, 66], '1F3': [10, 25], '1P1': [14, 28], '1S0': [14, 34], '3D1': [20, 32], '3D2': [22, 37], '3D3': [20, 45], '3F2': [10, 24], '3F3': [10, 24], '3F4': [10, 24], '3P0': [8, 15], '3P1': [8, 22], '3P2': [8, 18], '3S1': [13, 45]}

Quantum defect principal quantum number fitting ranges for different series

getPressure(temperature)[source]

Pressure of atomic vapour at given temperature.

Calculates pressure based on Ref. [17] (accuracy +- 5%).

ionisationEnergy = 5.6948674

(eV) Ref. [3]

levelDataFromNIST = 'sr_level_data.csv'

Sources Refs. [1], [2], [3], [4], [5], [6], [7], [8] , [10]

mass = 1.4597071452315522e-25

Ref. [18]

meltingPoint = 1050.15

in K

quantumDefect = [[[3.26923346261, -0.252029996277, 12.6529707842, 0.0, 0.0, 0.0], [2.73329407388, -5.97060805042, -40.2119216814, 0.0, 0.0, 0.0], [2.38878451407, -48.8061795134, 0.128122744619, 0.0, 0.0, 0.0], [0.0921617687317, -2.89264811181, 98.7654059257, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[3.26923346261, -0.252029996277, 12.6529707842, 0.0, 0.0, 0.0], [2.88651200565, 0.442418088474, -1.78011356853, 0.0, 0.0, 0.0], [2.66410028047, -0.209248799245, -8204.50063566, 0.0, 0.0, 0.0], [0.121637481305, -2.57038002901, 133.391164866, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[3.26923346261, -0.252029996277, 12.6529707842, 0.0, 0.0, 0.0], [2.88243476924, 0.390633779457, -0.456452019507, 0.0, 0.0, 0.0], [2.6617115361, -15.7900189481, -7520.34023263, 0.0, 0.0, 0.0], [0.121231620172, -2.84141643149, 169.2044499, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[3.37044793739, 0.534941918165, -11.1375820384, 0.0, 0.0, 0.0], [2.87169218101, 0.451857877887, -1.64370227677, 0.0, 0.0, 0.0], [2.60700545163, -18.3685877987, -24643.6669608, 0.0, 0.0, 0.0], [0.121422935185, -2.86416051794, 157.683861744, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]]

Contains list of modified Rydberg-Ritz coefficients for calculating quantum defects for [[ \(^1S_{0},^1P_{1},^1D_{2},^1F_{3}\)], [ \(^3S_{0},^3P_{0},^3D_{1},^3F_{2}\)], [ \(^3S_{0},^3P_{1},^3D_{2},^3F_{3}\)], [ \(^3S_{1},^3P_{2},^3D_{3},^3F_{4}\)]].

scaledRydbergConstant = 13.605607733714796

TODO source

class arc.divalent_atom_data.Ytterbium174(preferQuantumDefects=True, cpp_numerov=True)[source]

Bases: arc.divalent_atom_functions.DivalentAtom

Properties of Ytterbium 174 atoms

defectFittingRange = {'1D2': [28, 75], '1P1': [35, 53], '1S0': [15, 43], '3D2': [10, 52]}

Quantum defect principal quantum number fitting ranges for different series

extraLevels = []

TODO unkown if such exist at time of writing

getPressure(temperature)[source]

Pressure of atomic vapour at given temperature.

Calculates pressure based on Ref. [17] (accuracy +- 5%).

levelDataFromNIST = 'yb_level_data.csv'

Sources Refs. [11], [12], [13]

mass = 2.888322828573181e-25

Ref. [18]

meltingPoint = 1092.15

in K

quantumDefect = [[[4.27914, -7.06, 565, 0.0, 0.0, 0.0], [3.95433, -12.33, 1729, 0.0, 0.0, 0.0], [2.71363, -2.01, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]]

Contains list of modified Rydberg-Ritz coefficients for calculating quantum defects for [[ \(^1S_{0},^1P_{1},^1D_{2},^1F_{3}\)], [ \(^3S_{0},^3P_{0},^3D_{1},^3F_{2}\)], [ \(^3S_{0},^3P_{1},^3D_{2},^3F_{3}\)], [ \(^3S_{1},^3P_{2},^3D_{3},^3F_{4}\)]].

scaledRydbergConstant = 13.605607733714796

TODO source