Divalent atom data

Note

This is a completely new module added in ARC 3.0.0 version. See more at E. J. Robertson, N. Šibalić, R. M. Potvliege and M. P. A. Jones, arXiv:2007.12016 .

Strontium88([preferQuantumDefects, cpp_numerov]) Properties of Strontium 88 atoms
Calcium40([preferQuantumDefects, cpp_numerov]) Properties of Calcium 40 atoms
Ytterbium174([preferQuantumDefects, cpp_numerov]) Properties of Ytterbium 174 atoms

Data sources

[1](1, 2) J. A. Armstrong, J. J. Wynne and P. Esherick, “Bound, odd-parity J = 1 spectra of the alkaline earths: Ca, Sr, and Ba”, J. Opt. Soc. Am. 69, 211-230 (1979)
[2]R.Beigang, K.Lücke, A.Timmermann, P.J.West and D.Frölich, Determination of absolute level energies of 5sns1S0 and 5snd1D2 Rydberg series of Sr, Opt. Commun. 42, 19 (1982).
[3]J. E. Sansonetti and G Nave, Wavelengths, Transition Probabilities, and Energy Levels for the Spectrum of Neutral Strontium (Sr I), Journal of Physical and Chemical Reference Data 39, 033103 (2010).
[4]Baig M, Yaseen M, Nadeem A, Ali R. and Bhatti S. Three-photon excitation of strontium Rydberg levels, Optics Communications 156, 279 (1998)
[5](1, 2) P. Esherick, J. J. Wynne and J A Armstrong, Spectroscopy of 3P0 states of alkaline earths, Optics Letters 1, 19 (1977).
[6]P Esherick, Bound, even-parity J = 0 and J = 2 spectra of Sr, Physical Review A 15, 1920 (1977).
[7]R. Beigang and D. Schmidt, Two-Channel MQDT Analysis of Bound 5snd 3D1,3 Rydberg States of Strontium, Physica Scripta 27, 172 (1983).
[8]J R. Rubbmark and S. A. Borgstr¨om, Rydberg Series in Strontium Found in Absorption by Selectively, Laser-Excited Atoms. Physica Scripta 18, 196 (1978)
[9]Beigang R, Lucke K, Schmidt D, Timmermann A. and West P. J, One-Photon Laser Spectroscopy of Rydberg Series from Metastable Levels in Calcium and Strontium, Phys. Scr. 26, 183 (1982)
[10](1, 2, 3) L. Couturier, I. Nosske, F. Hu, C. Tan, C. Qiao, Y. H. Jiang, P. Chen and M. Weidemüller. Measurement of the strontium triplet Rydberg series by depletion spectroscopy of ultracold atoms http://arxiv.org/abs/1810.07611
[11]H. Maeda, Y. Matsuo, M. Takami and A. Suzuki, Optical-microwave double-resonance spectroscopy of highly excited Rydberg states of ytterbium, Physical Review A 45, 1732 (1992)
[12]M. Aymar, A. Debarre and O. Robaux, Highly excited levels of neutral ytterbium. II. Multichannel quantum defect analysis of odd- and even-parity spectra, Journal of Physics B: Atomic and Molecular Physics 13, 1089 (1980) https://doi.org/10.1088/0022-3700/13/6/016
[13](1, 2) H. Lehec, A. Zuliani, W. Maineult, E. Luc-Koenig, P. Pillet, P. Cheinet, F. Niyaz and T. F. Gallagher, Laser and microwave spectroscopy of even-parity Rydberg states of neutral ytterbium and multichannel-quantum-defect-theory analysis, Physical Review A 98, 062506 (2018)
[14]Thomas R. Gentile, Barbara J. Hughey, Daniel Kleppner and Theodore W. Ducas, Microwave spectroscopy of calcium Rydberg states, Physical Review A 42, 440 (1990)
[15](1, 2) Masabumi Miyabe, Christopher Geppert, Masaaki Kato, Masaki Oba, Ikuo Wakaida, Kazuo Watanabe and Klaus D. A. Wendt, Determination of Ionization Potential of Calcium by High-Resolution Resonance Ionization Spectroscopy, Journal of the Physical Society of Japan 75, 034302 (2006) https://doi.org/10.1143/JPSJ.75.034302
[16]Meija, Juris et al, “Atomic weights of the elements 2013 (IUPAC Technical Report)”, Pure and Applied Chemistry 88,265 (2016) https://doi.org/10.1515/pac-2015-0305.
[17](1, 2, 3) C.B.Alcock, V.P.Itkin, M.K.Horrigan, Canadian Metallurgical Quarterly, 23, 309 (1984) http://dx.doi.org/10.1179/cmq.1984.23.3.309
[18](1, 2, 3) NIST Standard reference database, https://dx.doi.org/10.18434/T4FW23
class arc.divalent_atom_data.Calcium40(preferQuantumDefects=True, cpp_numerov=True)[source]

Bases: arc.divalent_atom_functions.DivalentAtom

Properties of Calcium 40 atoms

defectFittingRange = {'1D2': [36, 66], '1F3': [10, 25], '1P1': [14, 28], '1S0': [14, 34], '3D1': [20, 32], '3D2': [22, 37], '3D3': [20, 45], '3F2': [10, 24], '3F3': [10, 24], '3F4': [10, 24], '3P0': [8, 15], '3P1': [8, 22], '3P2': [8, 18], '3S1': [13, 45]}

Quantum defect principal quantum number fitting ranges for different series

extraLevels = []

TODO unkown if such exist at time of writing

getPressure(temperature)[source]

Pressure of atomic vapour at given temperature.

Calculates pressure based on Ref. [17] (accuracy +- 5%).

ionisationEnergy = 6.1131554635113226

eV Ref. [15]

levelDataFromNIST = 'ca_level_data.csv'

Sources Refs. [1], [5], [9], [14]

mass = 6.635944355805756e-26

Ref. [18]

meltingPoint = 1115.15

in K

quantumDefect = [[[2.33793, -3.96, 0.0, 0.0, 0.0, 0.0], [1.885584, -0.114, -23.8, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.089, -2, 30, 0.0, 0.0, 0.0, 0.0]], [[2.440956, 0.35, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.8833, -0.02, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[2.440956, 0.35, 0.0, 0.0, 0.0, 0.0], [1.964709, 0.228, 0.0, 0.0, 0.0, 0.0], [0.8859, 0.13, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[2.440956, 0.35, 0.0, 0.0, 0.0, 0.0], [1.9549, 2.5, -160.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]]

Contains list of modified Rydberg-Ritz coefficients for calculating quantum defects for [[ \(^1S_{0},^1P_{1},^1D_{2},^1F_{3}\)], [ \(^3S_{1},^3P_{0},^3D_{1},^3F_{2}\)], [ \(^3S_{1},^3P_{1},^3D_{2},^3F_{3}\)], [ \(^3S_{1},^3P_{2},^3D_{3},^3F_{4}\)]].

scaledRydbergConstant = 13.605506484498859

eV Ref. [15]

class arc.divalent_atom_data.Strontium88(preferQuantumDefects=True, cpp_numerov=True)[source]

Bases: arc.divalent_atom_functions.DivalentAtom

Properties of Strontium 88 atoms

defectFittingRange = {'1D2': [20, 50], '1F3': [10, 28], '1P1': [10, 29], '1S0': [14, 34], '3D1': [28, 50], '3D2': [28, 50], '3D3': [20, 37], '3F2': [10, 24], '3F3': [10, 24], '3F4': [10, 28], '3P0': [8, 15], '3P1': [8, 21], '3P2': [19, 41], '3S1': [15, 50]}

Quantum defect principal quantum number fitting ranges for different series

getPressure(temperature)[source]

Pressure of atomic vapour at given temperature.

Calculates pressure based on Ref. [17] (accuracy +- 5%).

ionisationEnergy = 5.694867028492927

(eV) Ref. [10]

levelDataFromNIST = 'sr_level_data.csv'

Sources Refs. [1], [2], [3], [4], [5], [6], [7], [8] , [10]

mass = 1.4597071452315522e-25

Ref. [18]

meltingPoint = 1050.15

in K

quantumDefect = [[[3.269123, -0.177769, 3.4619, 0.0, 0.0, 0.0], [2.72415, -3.39, -220.0, 0.0, 0.0, 0.0], [2.384667, -42.03053, -619.0, 0.0, 0.0, 0.0], [0.090886, -2.4425, 61.896, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[3.3707725, 0.41979, -0.421377, 0.0, 0.0, 0.0], [2.88673, 0.433745, -1.8, 0.0, 0.0, 0.0], [2.675236, -13.23217, -4418.0, 0.0, 0.0, 0.0], [0.120588, -2.1847, 102.98, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[3.3707725, 0.41979, -0.421377, 0.0, 0.0, 0.0], [2.88265, 0.39398, -1.1199, 0.0, 0.0, 0.0], [2.661488, -16.8524, -6629.26, 0.0, 0.0, 0.0], [0.11899, -2.0446, 103.26, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[3.3707725, 0.41979, -0.421377, 0.0, 0.0, 0.0], [2.88163, -2.462, 145.18, 0.0, 0.0, 0.0], [2.655, -65.317, -13576.7, 0.0, 0.0, 0.0], [0.12, -2.37716, 118.97, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]]

Contains list of modified Rydberg-Ritz coefficients for calculating quantum defects for [[ \(^1S_{0},^1P_{1},^1D_{2},^1F_{3}\)], [ \(^3S_{1},^3P_{0},^3D_{1},^3F_{2}\)], [ \(^3S_{1},^3P_{1},^3D_{2},^3F_{3}\)], [ \(^3S_{1},^3P_{2},^3D_{3},^3F_{4}\)]].

scaledRydbergConstant = 13.60560822965159

Ref. [10]

class arc.divalent_atom_data.Ytterbium174(preferQuantumDefects=True, cpp_numerov=True)[source]

Bases: arc.divalent_atom_functions.DivalentAtom

Properties of Ytterbium 174 atoms

defectFittingRange = {'1D2': [40, 80], '1P1': [35, 54], '1S0': [34, 80], '3D2': [35, 80]}

Quantum defect principal quantum number fitting ranges for different series

extraLevels = []

TODO unkown if such exist at time of writing

getPressure(temperature)[source]

Pressure of atomic vapour at given temperature.

Calculates pressure based on Ref. [17] (accuracy +- 5%).

levelDataFromNIST = 'yb_level_data.csv'

Sources Refs. [11], [12], [13]

mass = 2.888322828573181e-25

Ref. [18]

meltingPoint = 1092.15

in K

quantumDefect = [[[4.278367, -5.60943, -258.5, 0.0, 0.0, 0.0], [3.953434, -10.58286, 728.1, 0.0, 0.0, 0.0], [2.7130117, -0.929878, -636.4, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2.7485996, 0.0137, -106.55, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]]

Contains list of modified Rydberg-Ritz coefficients for calculating quantum defects for [[ \(^1S_{0},^1P_{1},^1D_{2},^1F_{3}\)], [ \(^3S_{1},^3P_{0},^3D_{1},^3F_{2}\)], [ \(^3S_{1},^3P_{1},^3D_{2},^3F_{3}\)], [ \(^3S_{1},^3P_{2},^3D_{3},^3F_{4}\)]].

scaledRydbergConstant = 13.605650209461325

eV Ref. [13]