arc.divalent_atom_functions.DivalentAtom.getDipoleMatrixElement#
- DivalentAtom.getDipoleMatrixElement(n1, l1, j1, mj1, n2, l2, j2, mj2, q, s=0.5)#
Dipole matrix element \(\langle n_1 l_1 j_1 m_{j_1} |e\mathbf{r}|\ n_2 l_2 j_2 m_{j_2}\rangle\) in units of \(a_0 e\)
- Parameters:
l1 (n1.) – principal, orbital, total angular momentum, and projection of total angular momentum for state 1
j1 – principal, orbital, total angular momentum, and projection of total angular momentum for state 1
mj1 – principal, orbital, total angular momentum, and projection of total angular momentum for state 1
l2 (n2.) – principal, orbital, total angular momentum, and projection of total angular momentum for state 2
j2 – principal, orbital, total angular momentum, and projection of total angular momentum for state 2
mj2 – principal, orbital, total angular momentum, and projection of total angular momentum for state 2
q (int) – specifies transition that the driving field couples to, +1, 0 or -1 corresponding to driving \(\sigma^+\), \(\pi\) and \(\sigma^-\) transitions respectively.
s (float) – optional, total spin angular momentum of state. By default 0.5 for Alkali atoms.
- Returns:
dipole matrix element( \(a_0 e\))
- Return type:
Example
For example, calculation of \(5 S_{1/2}m_j=-\frac{1}{2}\ \rightarrow 5 P_{3/2}m_j=-\frac{3}{2}\) transition dipole matrix element for laser driving \(\sigma^-\) transition:
from arc import * atom = Rubidium() # transition 5 S_{1/2} m_j=-0.5 -> 5 P_{3/2} m_j=-1.5 # for laser driving sigma- transition print(atom.getDipoleMatrixElement(5,0,0.5,-0.5,5,1,1.5,-1.5,-1))