arc.divalent_atom_functions.DivalentAtom.getC3term#

DivalentAtom.getC3term(n, l, j, n1, l1, j1, n2, l2, j2, s=0.5)#

C3 interaction term for the given two pair-states

Calculates \(C_3\) intaraction term for

\(|n,l,j,n,l,j\rangle \leftrightarrow |n_1,l_1,j_1,n_2,l_2,j_2\rangle\)

Parameters:
  • n (int) – principal quantum number

  • l (int) – orbital angular momentum

  • j (float) – total angular momentum

  • n1 (int) – principal quantum number

  • l1 (int) – orbital angular momentum

  • j1 (float) – total angular momentum

  • n2 (int) – principal quantum number

  • l2 (int) – orbital angular momentum

  • j2 (float) – total angular momentum

  • s (float) – optional, total spin angular momentum of state. By default 0.5 for Alkali atoms.

Returns:

\(C_3 = \frac{\langle n,l,j |er |n_1,l_1,j_1\rangle \langle n,l,j |er|n_2,l_2,j_2\rangle}{4\pi\varepsilon_0}\) (\(h\) Hz m \({}^3\)).

Return type:

float